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Running is becoming an increasingly popular sport; however, runners have a high 

rate of injury and are therefore often treated in the orthopedic or sports medicine setting.  

One current focus of these patients’ treatment is gluteus medius muscle (GM) 

strengthening and gait retraining, with the goal of decreasing frontal plane pelvic drop.  

Unfortunately, there is a research void assessing the role of GM function on pelvic drop, 

and the effect of an increased pelvic drop on running performance.  The specific aims of 

this research were to investigate a link between frontal plane pelvic drop and (1) 

isometric GM torque, (2) GM surface electromyography (sEMG) peak amplitude and 
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onset timing, and (3) GM fatigue; and (4) to study the relationship between frontal plane 

pelvic drop and increased metabolic energy demands.  Subjects were recreational runners 

who ran an average of five or more miles per week.  Data from an initial ten subjects 

were collected, followed by an additional eleven subjects tested for Specific Aims #1, 2, 

and 3.  GM maximal isometric torque was obtained prior to the run.  Subjects ran on a 

treadmill for thirty minutes while three-dimensional pelvic kinematics, GM sEMG, and 

metabolic data were collected.  Pearson’s Correlations and scatter plots of the variables 

showed no relationship between GM maximal isometric strength, GM peak amplitude 

and onset timing, or GM fatigue rate and frontal plane pelvic drop.  The change in pelvic 

drop also had no effect on the change in running economy (RE) from the start to end of 

the run.  Clinicians should not employ a GM centered treatment approach when treating 

frontal plane pelvic instability in runners.  Future research into additional core stabilizing 

muscles and their interactions could provide insight into which muscles should be the 

focus of treatment in runners with proximal instability.  These studies should also include 

kinetic as well as lower extremity (LE) kinematic analysis of running gait to investigate 

the link between these variables, their relationship to muscle performance, as well as to 

running performance. 
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CHAPTER 1 – INTRODUCTION AND LITERATURE 
REVIEW 

 

 Running is becoming an increasingly popular fitness activity, with an estimated 

37.8 million Americans participating at some level in 2005.1  Meanwhile, the 

combination of running’s repetitive loading and the increasing number of runners 

contributes to running-related injuries.  The overall incidence of injuries has been 

reported as 19.4% to 92.4% in long-distance runners, with an average of 49.6%.2-20  The 

majority of musculoskeletal running injuries have been classified as overuse in nature, 

and can be traced to training errors, or anatomical or biomechanical factors.8, 21, 22  

However, there is a research void linking altered running mechanics to overuse injuries.  

To begin to address this void, the overall aim of this research was to investigate one 

running gait deviation, frontal plane pelvic drop, and its relationship to gluteus medius 

muscle (GM) isometric strength and activity, as well as metabolic energy demands. 

 This introduction will provide:  an overview of the running gait cycle, methods 

for running assessment, causes of gait deviations, and specific aims and hypotheses for 

this research. 

RUNNING GAIT CYCLE 

Distinct from walking, running consists of two float phases occurring at the 

beginning and end of swing phase.  Running is therefore an alternation of single limb 

stance and nonsupport phases.  As speed increases, less time is spent in the stance phase. 

 1 
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Slocum and James23 were the first to describe the running gait cycle, which they 

broke up into two phases:  support and forward recovery.  The support phase is the period 

of single leg stance from initial contact until the foot leaves the ground to begin swing 

phase, and consists of foot-strike, mid-support, and takeoff.  The forward recovery phase 

occurs during swing as the leg is advancing prior to foot-strike, and is comprised of 

follow-through, forward swing, and foot descent. 

Foot-strike 

Foot-strike (FS) begins when the foot hits the ground and continues until the foot 

becomes firmly fixed.  At the point of FS, the phase of support is initiated, and the stance 

limb must absorb the body weight, maintain balance, and continue forward progression.23 

In the sagittal plane, the leg moves in a rearward direction at FS secondary to the 

concentric contraction of the gluteus maximus and hamstring muscles; eccentric 

quadriceps contraction controls this motion.  Ground contact occurs slightly ahead of or 

below the center of gravity (COG).24-27  The pelvis is anteriorly rotated approximately 

15°, the hip is flexed 30º to 40º, and the knee is flexed 30º to 35º at FS.23, 25, 28-30  Ankle 

position will depend on the runner’s style of foot contact (heel, midfoot, or forefoot).23, 25  

Depending on the location of foot contact, the ground reaction force vector will vary.  

The gravitational line of weight, however, must fall through the stance foot and divide the 

body weight equally if balance is to be maintained.27 

In the frontal plane, the pelvis is obliquely aligned, with the stance side slightly 

elevated compared to the swing side, corresponding to hip adduction.28-30  Schache et al.30 

found the average pelvic obliquity to be 2.3° ± 1.2° elevated on the stance side at FS in a 
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group of twenty healthy, conditioned male runners running at 4.0 m/s.  Pelvic obliquity, 

controlled by the GM and tensor fascia which eccentrically stabilize the hip joint, is 

theorized to aide in shock absorption and control descent of the COG.23, 25, 26 

Additionally, the base of support is decreased in running compared to walking.  In 

the transverse plane, this will be apparent as foot strikes will occur along a line of 

progression, as compared to two to four inches apart as in walking.31  The hip will also be 

externally rotated corresponding to the slight external rotation of the pelvis in the 

transverse plane, which Schache et al.30 quantified as 3.9° ± 2.5°.23, 28, 29 

Mid-support 

 The period of mid-support begins when the foot is fixed and continues until the 

heel begins to rise from the ground.23, 25  During this phase, momentum takes the body 

over the foot, while the stance leg supports the body and continues the body’s forward 

motion.  In the sagittal plane, the COG is at its lowest point, as the stance extremity is in 

a flexed position in preparation for an extension thrust in the latter phase.25, 27  The 

quadriceps muscles continue their eccentric control of knee flexion.26  Meanwhile, the 

pelvis moves posteriorly to a position of minimal anterior tilt, followed by anterior 

movement.28-30 

Frontal plane pelvic motion begins with horizontal alignment that transitions 

toward downward obliquity of the swing leg, followed by a shift toward upward pelvic 

motion by the end of midsupport.  This corresponds to a transition from eccentric to 

concentric contraction of the GM and tensor fascia.24, 26, 28, 29  The pelvic movement 

corresponds to hip position, which is slightly adducted in the frontal plane due to pelvic 
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sag on the swing leg in an effort to provide shock absorption, vertical height adjustment 

to clear the swing leg, and lateral balance; followed by hip abduction during late 

midstance.23, 28  In the transverse plane, pelvic external rotation increases and reaches a 

maximum point of 7.2° ± 3.5°.28-30 

Takeoff 

 Takeoff begins when the heel begins to rise and continues until the toes leave the 

ground.  At the end of takeoff, there is an extension of the stance leg to provide forward 

motion in an effort to maximally accelerate the body in preparation for a float phase.  In 

the sagittal and transverse planes, the pelvis is at approximately 20° of maximal anterior 

tilt, the hip extends and internally rotates, and the knee also extends.23, 25, 28-30  The leg 

passes over the metatarsal heads in the sagittal plane, allowing the heel to rise.23, 25 

In the frontal plane, the pelvis reaches a point of maximum downward obliquity 

on the takeoff side, and the hip is in slight abduction.28-30  Schache et al.30 found the 

average downward pelvic obliquity to be 5.4° ± 2.6° at takeoff.  The pelvis also begins to 

internally rotate in the transverse plane during this period, such that it is neutral when the 

toes leave the ground.28-30 

Follow-through 

 Follow-through begins as the trail foot leaves the ground and continues until the 

leg finishes decelerating during rearward motion.  At the same time the contralateral limb 

is undergoing foot descent.  In the sagittal plane, the hip, knee, and ankle reach a point of 

greatest extension; while, the pelvis begins to posteriorly tilt.23, 25, 28, 29  Flexion of the hip 

and knee, however, will occur near the end of follow-through.23, 25, 28 
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Further hip abduction occurs to aid in clearance of the contralateral swing limb, 

and the pelvis begins to rise in the frontal plane until a slight lowering occurs 

corresponding to FS on the contralateral side.  The pelvis also continues to internally 

rotate in the transverse plane.28-30  Deceleration occurs in a proximal to distal progression 

until a point of zero velocity at the foot is reached.23, 25 

Forward Swing 

 Forward swing begins as the thigh moves forward in the sagittal plane to a point 

of maximum hip flexion.23, 28  Hip flexion during this phase is eccentrically controlled via 

the hamstring muscle group.26  In the transverse plane, the pelvis continues to internally 

rotate until a point of maximum internal rotation of 6.7° ± 3.5° is reached to lengthen the 

stride; while, in the frontal plane the pelvis on the ipsilateral side rises and the hip 

continues abduction.28-30  A proximal to distal forward motion occurs in the sagittal 

plane, angular momentum is created, and the knee is able to passively flex to clear the 

foot. 

In the sagittal plane, the pelvis reverses from relative posterior tilt to anterior tilt, 

and knee flexion reaches its greatest point once the thigh has past the trunk’s vertical 

line.23, 25, 28, 29  Knee flexion also enables the COG to rise, until the hip nears full 

flexion.23, 25  During early forward swing, the body is in a double float, or airborne phase.  

Once the thigh is just behind the COG, the contralateral leg bears weight as FS occurs.  

The contralateral leg will continue to be in support phase until the thigh of the swing leg 

reaches its highest point.  Then, takeoff will occur on the contralateral leg, and the body 

again enters a period of double float.23 
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Foot Descent 

 The period of foot descent begins when the hip has reached a point of maximum 

hip flexion, and ends at the point of FS.  In the sagittal plane, the thigh begins posterior 

movement allowing continued knee extension via quadriceps concentric contraction.26  

The gluteus maximus and hamstrings increase eccentric muscle activity during foot 

descent to decelerate the forward motion of the swing thigh to zero velocity in 

preparation for FS.32  At this point, the knee is at 30º of flexion, and the tibia is 

perpendicular to the ground.  As the knee extends, the foot reaches a point where it is 

furthest from the body.  The swing leg begins to move posteriorly in preparation for FS, 

and the running cycle repeats.23 

In the frontal plane, the pelvis continues to rise and maximal upward pelvic 

obliquity is obtained in an effort to allow foot clearance of the swing limb while the hip 

and knee are extending, and the hip begins to adduct again in preparation for accurate FS.  

The pelvis also externally rotates in the transverse plane.28-30  This has been hypothesized 

to prepare the body for FS by:  first decreasing the posterior vector of the ground reaction 

force (GRF), and second by decreasing the horizontal linear distance between the point of 

contact and the body’s COG.  An externally rotated pelvis may therefore decrease 

horizontal braking forces and avoid deceleration.28, 29 

RUNNING ASSESSMENT 

 Methods to assess running performance vary from observational clinical methods 

to computerized, gait labs.  The purposes for the spectrum of performance assessment 

methods differ; however, the goal of using the tool is to improve running gait. 
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Observational Gait Analysis 

 Observational gait analysis (OGA) is cost efficient, fast, and easy to use as 

compared to computerized gait analysis techniques.  To evaluate a patient, clinicians may 

employ OGA to determine impairments, establish goals, and/or assess progress.  OGA 

can either occur in person (real-time) or via videotape (real-time, slow motion, or frame 

by frame).  Depending on availability, a clinic may or may not have a video camera.  A 

clinician without a camera is at a disadvantage, because the clinician is not able to replay 

or break the running down into slow motion or frame by frame in order to better analyze 

gait.  Without this capability, the clinician could miss gait deviations that are not grossly 

abnormal or that occur quickly.  The clinician in either instance could observe the runner 

on a treadmill or on land.  The difficulty with treadmill running is that it may not 

replicate real-life conditions for the runner.  The runner may feel uncomfortable on the 

treadmill, and therefore the observed running gait may not be representative.  The 

advantage is that the runner is in one place, and so videotape analysis is more feasible.  If 

the clinician were to watch the runner on land, the clinician might have difficulty 

detecting deviations as the runner moves away from the clinician. 

 The use of OGA is not new to research; however, assessments of observational 

analysis of running gait are.  Therefore, information related to the reliability and validity 

of OGA primarily comes from research related to pediatrics, amputees, and neurologic 

patients.  The interrater reliability of OGA studies has ranged from poor to good, possibly 

due to differences in design and severity of the gait deviation.33 
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One of the few studies assessing OGA reliability in the orthopedic population was 

conducted by Brunnekreef et al.33  Patients studied had a mild to severe gait deviation 

secondary to an orthopedic impairment.  Walking gait deviations were assessed using 

videotaped OGA, and raters were allowed to view the videotape in slow motion, freeze 

frame, and as many times as needed.  The authors reported moderate reliability of OGA.  

Decreased reliability could be attributed to inconsistencies or variability in the gait 

deviation.  The highest reliability was obtained for easily observed items, rather than 

minute gait deviations.  Additionally, in-experienced and experienced raters showed little 

difference in interrater reliability (intra-class correlation coefficient (ICC) 0.40 and 0.42, 

respectively) or intrarater reliability (ICC 0.57 and 0.63, respsectively).  Reliability did, 

however, improve in expert raters, with ICC of 0.54 for interrater and 0.72 for intrarater 

reliability. 

Eastlack et al.34 studied the interrater reliability among fifty-four physical 

therapist using videotaped OGA to assess walking in three patients with stage 2 or 3 

rheumatoid arthritis.  An investigator was present during the rater’s assessments to slow 

and uniformly stop the video at predetermined points within the gait cycle.  The 

investigators found that kappa coefficients were in the low to moderate range for the ten 

variables tested, and there was no significant difference in the interrater reliability based 

on the rater’s clinical experience.  Decreased reliability was noted on kinematic measures 

of temporospatial assessment and those requiring judgement on “normal” ranges of 

motion.  The most reliable results occurred during frontal plane assessments.  The authors 
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point out that this contrasts with previous findings by Krebs et al.35 who found sagittal 

plane assessments to be more reliable. 

Eastlack et al.34 state that although OGA is a quick and cost-efficient method to 

assess gait, findings of poor to moderate reliability bring into question the validity of the 

technique.  If reliability of OGA is poor, findings would be inaccurate, and clinical 

decision-making could be jeopardized.  Although the authors conclude that OGA has the 

potential to be a useful clinical assessment tool, the clinician should first recognize 

OGA’s reliability limitations and not base treatment regimes or clinical decisions solely 

on OGA results.  The authors indicate that research is needed to identify normative 

values to be used in OGA, and suggest that education on gait analysis techniques might 

improve clinician expertise and therefore reliability. 

Laboratory Gait Analysis 

 Kinematic, kinetic, and EMG variables are more commonly assessed in a 

laboratory than clinic setting, due to cost and therefore equipment restrictions.  The 

advantage to these methods is that they supply more information than simple OGA.  One 

can obtain computerized force and kinematic data, from which computer processing and 

statistics supply information on relations between planar motions and forces.  Computer 

manipulation allows the researcher to view the runner in three dimensions, and therefore 

increases the ease of viewing kinematics in the sagittal, transverse, and frontal planes.  

Additionally kinematic, kinetic, and EMG methods permit the researcher to analyze 

multiple, quantitative variables, rather than subjective assessments made with OGA.  The 
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reliability and accurate reflection of these measures is important if the measure will be 

used to guide clinical decisions. 

 Researchers often employ reflective markers or electromagnetic tracking systems 

for kinematic analysis.  These markers are placed over anatomical reference points from 

which the computer creates an anatomical coordinate system to represent the subject.  

Problems arise, however, with the markers/sensors due to either movement, distance from 

the anatomical landmark, or poor placement.  Reinschmidt et al.36 studied the effect of 

skin movement in three subjects on the validity of knee joint motion during running.  

Kinematic data collected from skin markers was compared to Hofmann bone pins, which 

were used as the gold standard.  Error from the greater trochanter marker was twice as 

great as the other markers, for which error averaged 2.5 mm.  The difference for knee 

flexion/extension averaged 20.8%, abduction/adduction 70.4%, and internal/external 

rotation 63.3%.  The authors concluded that the skin markers yielded a good 

representation of skeletal motion for flexion/extension; however, other knee motions may 

not be valid measures.  Differences seen between skeletal and external motions were 

attributed to skin movement of the thigh and muscle activity.  Therefore, the authors 

recommend that marker placement over a muscle belly should be avoided. 

 Using a larger sample size of forty normal adults, Kadaba et al.37 evalutated the 

reliability of kinematic, kinetic, and EMG data.  Subjects’ walking gait was analyzed 

three times on three testing days that were at least one week apart as the subjects walked 

at a natural speed along a 6 m walkway.  For kinematic, kinetic, and EMG variables, 

repeatability was greater during within-day versus between-day testing (ranges of 
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coefficient of multiple correlations for within-day versus between-day testing, 

respectively:  kinematic 0.643 to 0.996, 0.240 to 0.983; kinetic 0.856 to 0.997, 0.817 to 

0.995; and EMG 0.746 to 0.899, 0.661 to 0.875).  Kinematic analysis of joint angle 

motion other than pelvic tilt showed excellent reliability (> 0.90) in the sagittal plane; 

however, transverse and frontal plane repeatability was lower (> 0.40 and 0.60, 

respectively).  Kinetic measures of vGRF (vertical ground reaction force) and fore-aft 

shear were more repeatable (> 0.98) than mediolateral shear or torque about the center of 

pressure (> 0.89).  Force moments at the knee showed lower repeatability (> 0.93) than 

moments at the hip and ankle (> 0.97), and sagittal plane moments were more reliable  

(> 0.93) than transverse or frontal plane variables (> 0.81 and 0.88, respectively).  Yet, all 

kinetic variables for within-day and between-day testing showed good repeatability  

(> 0.80).  EMG activity was more reliable for distal than proximal muscles (> 0.83 and 

0.66, respectively), and EMG data was less repeatable compared to kinetic and kinematic 

measures.  The authors attributed the decreased EMG between-day reliability to difficulty 

placing electrodes over the same volume of muscle on different days.  Subtracting out a 

neutral position obtained from a static trial could reduce offsets in data between testing 

days.  However, between-day repeatability remained lower than within-day.  Based on 

the findings of adequate reliability (> 0.60), the authors concluded that for a normal 

population it may be feasible to make clinical decisions from a single gait analysis.  This 

finding should not be generalized to injured populations or patients with gait deviations. 

 In a similar study, Mills et al.38 studied the repeatability of three-dimensional gait 

kinematics using an electromagnetic tracking system during treadmill walking in ten 
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subjects.  Intra-trial repeatability was excellent (coefficient of multiple determination 

ranging from 0.819 to 0.995), with repeatability of sagittal plane motions the highest  

(≥ 0.967).  These findings were similar to those reported by Kadaba et al.37, who found 

average coefficients of multiple determinations of the hip, knee, and ankle angles to be 

0.983, compared to 0.985 found by Mills et al.  Although frontal and transverse plane 

repeatability were lower, coefficients of multiple determinations averaged 0.919 and 

0.922, respectively.  These findings were superior to those reported by Kadaba et al.  The 

results concurred with Kadaba et al.; repeatability was more affected by inter-day testing 

than inter-tester set-up. 

 Gait analysis of running presents specific factors than can affect reliability, such 

as individual differences in mechanics, speed of testing, and comfort level under testing 

conditions.  Therefore, studies related to the reliability of running variables specifically 

are important when evaluating running gait analysis.  In a study by Diss39, the reliability 

of kinematic and kinetic variables and the number of trials required to obtain accurate 

data were evaluated in five runners.  Kinematic data based on the mean of five trials and 

kinetic data from the mean of ten trials showed good reliability (R > 0.93).  

Unfortunately, multiple trials are often time consuming in the clinic, and reliability would 

therefore decrease if fewer trials were analyzed.  Three trials, which might be more 

obtainable, produced an 80% confidence level for kinematic and kinetic variables.  

Additionally, efforts to disguise or divert attention away from the force plate location 

improved reliability secondary to decreased alterations in running gait. 
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 In a similar study, Ferber et al.40 compared the within and between-day reliability 

of discrete three-dimensional kinematic and kinetic variables in twenty uninjured runners.  

The investigators found that most of the variables maintained high reliability (> 0.80) for 

both within and between-day testing.  Between-day reliability was consistently lower 

except for GRF’s.  For between-day variables with an ICC of < 0.70, the corresponding 

within-day variables had ICC values > 0.87.  The authors point out that between-day 

reliability remained lower despite attempts to control intertester reliability by employing 

one investigator to apply the markers.  Between-day variables’ peak angular excursion 

and velocity ICC’s were higher than the corresponding peak angle ICC (using hip 

abduction as an example, 0.84 and 0.86 versus 0.69).  The average difference in peak 

angle was 9.04º for all variables combined; while, the average difference in the respective 

angular excursion was 3.63º.  This finding suggests that when assessing a runner’s gait 

over time, relative variables such as joint angular excursion and velocity are more reliable 

than absolute variables such as joint angle.  In this study, sagittal plane ICC’s were more 

reliable (> 0.8) than those in either the frontal or transverse planes (> 0.5 and 0.6, 

respectively) for between-day testing only.  GRF variables had high within and between-

day reliability (≥ 0.88) and were found to be more reliable than either kinetic or 

kinematic variables.  The authors conclude that although within-day testing was more 

reliable when looking at the variables as a whole, between-day testing could also produce 

similar reliability if variables consisted of GRF’s and relative kinematic variables. 

 Hunter et al.41, similar to Diss39 and Ferber et al.40, assessed the reliability of 

kinematic and kinetic variables during sprint running in twenty-eight males subjects.  For 
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all variables, improvements in reliability were directly correlated to increases in the 

average of multiple trials, up to five in this study.  Variables related to horizontal velocity 

of the COM yielded the highest reliability (ICC > 0.9).  Whereas, variables calculated 

from vertical displacement of the COM produced the lowest reliability (ICC > 0.5).  No 

matter the variable, the trend remained that increases in the number of trials analyzed 

increased reliability. 

 Based on the above findings there are several consistent conclusions which should 

be considered when assessing gait in a laboratory setting.  First, the researcher should 

recognize that between-day reliability would likely be lower than within-day secondary 

to extraneous variables introduced by testing on multiple days.  Second, when using 

reflective markers or electromagnetic sensors, skin movement and muscle contractions 

will change the position of the marker/sensor relative to its anatomical landmark.  

Additionally, attaching the markers/sensors to the same location each day is difficult, and 

will therefore introduce reliability issues.  Third, a neutral, static data collection should be 

used to negate offset that occurs between days or trials.  Lastly, if it is possible to run 

multiple trials, at least three will aide in increasing the reliability of measures. 

GAIT DEVIATIONS 

Epidemiology 

 The current debate in running literature centers on the epidemiology of running 

injuries and gait deviations.  Does the runner develop a gait deviation that causes an 

injury, or does the runner become injured and compensates through a gait deviation?  

Does age, activity level, or gender impact running gait or the likelihood of injury?  
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Because of a lack of longitudinal gait analysis studies, there is not a conclusive answer to 

these questions. 

Age and Activity Level 

 There is little information on the long-term changes in running gait associated 

with aging secondary to a lack of longitudinal studies from childhood to later in life.  

During adolescence there are many body changes both structural and hormonal.  It is 

possible that these changes could predispose an adolescent to running gait deviations or 

overuse injuries, similar to tendencies in sports such as soccer and gymnastics.  Studies 

do exist, however, comparing younger to older runners.  Aging is associated with a 

decline in muscle force and coordination, and these changes in muscle function are 

associated with gait deviations.  Deficits in mobility include gait velocity, step length, 

and range of motion of the lower extremity (LE).  A linear decrease in running speed in 

adults correlates with aging up to eighty years-old, thereafter, speed progressively 

decreases.42, 43 

 In a study assessing the age-related differences in 100 m sprint performance, 

Korhonen et al.42 evaluated the sprinting of seventy subjects aged forty to eighty-nine 

years old.  The authors found the decline in velocity to be exponential rather than linear; 

this difference was more apparent after sixty-five years of age.  The velocity deficit was 

similar throughout the phases of running gait for both genders.  Associated with a decline 

in velocity, stride length decreased and stance time increased linearly with increasing age 

for both males and females.  Bus43 found that these compensations in fifty-five to sixty-

five year-old men kept peak impact force and loading rate similar to that in twenty to 
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thirty-five year-old male runners when running at a self-selected speed.  When the older 

men ran at a controlled running speed of 3.3 m/s, higher impact loads were observed.  

Increased forces would suggest a decreased ability to absorb shock and a resulting 

increased stress on LE bones, joints, and soft tissues.  Without age-related running gait 

compensatory techniques, the older runner in theory could be at higher risk of overuse 

injury and/or gait deviations. 

 Savelberg et al.44 studied the effects of running on counterbalancing gait 

performance changes in the inactive and aging populations.  Forty male subjects 

comprised groups of young active, young inactive, old active, and old inactive adults.  

Active was defined as having run at least twice a week for more than two years.  The 

researchers found that activity level did not affect walking gait velocity, and cadence was 

not significantly affected by age.  When subjects were able to walk at a comfortable self-

selected pace, the age-activity interaction remained; young active subjects walked faster 

than subjects in the other groups.  In terms of kinematics, knee range of motion was 

inversely related to age.  The support torque was similar between the young and active 

elderly.  However, the inactive elderly subjects’ differences were due to work production.  

Inactive elderly subjects were found to generate less knee extension work than the active 

elderly.  Additionally, the shift from an ankle to hip postural strategy in the active elderly 

allowed compensation for a decreased ankle torque, which maintained the overall support 

torque pattern similar to that in the young adults.  This shift in increased hip torque 

production is not, however, affected by activity level.  Running in the active elderly did 

not counterbalance the ankle to hip torque shift, rather running enlarged the shift. 
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 In a similar study, Dorner et al.45 studied the effect of running on the age-related 

changes in gait symmetry of Sprague-Dawley rats.  Following three months of training, 

the stride length increased and gait symmetry improved.  Stance width, however, was 

unaffected.  Running appeared to prevent age-related gait changes in rats.  From these 

age and activity studies, it appears that running can prevent associated gait changes 

through compensations.  Although the older population may decrease stride length and 

increase stance time to compensate for a decreased running velocity, overall torque 

generation remains relatively unchanged.  Despite these compensations, one might 

hypothesize that a shift from an ankle to hip postural control strategy combined with a 

decrease in muscle force and control could lead to injuries and/or gait deviations in older 

or inactive runners.  There are, however, no studies to suggest that increased age or 

inactivity may lead to a propensity toward running gait deviations or injury because of a 

decrease in muscle activity and coordination. 

Gender 

In a fifteen year prospective-longitudinal study, Rauh et al.12 tracked the injury 

rate among 199 high school cross country teams from twenty-three high schools during 

the athletes’ high school career (1,202 females and 2,031 males).  The researchers found 

that injury rates were significantly higher for females for both initial and subsequent 

injuries.  Additionally, injuries in females resulted in greater length of absence from 

running secondary to the injury, and the injury rate for out-of-season injuries was almost 

two times greater for females than males.  Females also had a significantly higher injury 
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rate than males at the hip, shin, and foot.  The authors did not attempt to link incidence to 

epidemiology. 

Studies have found a correlation between decreased hip abduction strength, 

gender, and injury.42, 46  Ferber et al.47 studied gender differences between kinetic and 

kinematic data for twenty male and female recreational runners.  In the frontal plane of 

stance phase, females had a significantly greater peak hip adduction angle, hip frontal 

plane negative work, and peak hip adduction velocity as compared to males.  The authors 

hypothesized that the greater peak hip adduction angle and greater stance phase hip 

adduction in females could be attributed to structural differences.  These findings may 

suggest that strength imbalances may be associated with or predispose an athlete to 

injury, injuries may lead to strength imbalances, or this cascade of events may differ 

between genders. 

Pathology 

 There is a gap in research linking running gait deviations to overuse injuries.  

Theory exists in the field supporting the idea that abnormal gait mechanics could increase 

forces and lead to injury, or vice versa.  One possibility for a gait deviation could be 

asymmetry caused by limb alignment.  For instance, if a runner’s right leg was shorter he 

might exhibit right pelvic drop to compensate for the decreased leg length.  One might 

hypothesize that the compensatory hip drop could increase impact forces on the right LE 

and predispose the runner to right LE injury.  Lun et al.6, however, found that static lower 

limb alignment did not differ between 153 injured and non-injured recreational runners.  

These findings were consistent with Wen et al.20, who concluded that LE alignment 
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asymmetries did not appear to be a conclusive major risk factor for overuse injuries in 

255 runners training for a marathon. 

 James et al.21 followed 180 patients with 232 injuries.  Again, no single anatomic 

variation correlated with specific diagnoses.  The authors could trace the majority of 

injuries to improper training.  However, the authors also concluded that most injuries in 

distance runners could be resolved with sufficient rest, but may recur if the exact etiology 

was not identified and addressed.  These studies fail to assess running gait, and therefore 

it is unknown whether there is a correlation between gait deviations and pathology.  

Therefore, longitudinal studies are needed to track runners and their running gait to test 

the theory of a link between gait deviations and injury. 

Frontal Plane Pelvic Drop 

As therapists and researchers expand their focus in injury prevention and 

treatment to proximal joint mechanics and core stability, the lumbo-pelvic hip complex 

and its role in closed kinetic chain activities have become a focus.  Core stability could be 

defined as the lumbo-pelvic hip muscle strength and endurance yielding a coordinated 

activation of muscles and maintenance of alignment throughout the kinetic chain, thereby 

positioning the distal body segment in the most optimal position for a particular athletic 

task.48-51  When core instability exists, due to strength and/or endurance deficits, the body 

may not be optimally aligned.  For example, frontal plane pelvic drop is a sign of core 

instability that could be identified as a weak link in the running kinetic chain that could 

explain some running deviations and injuries. 
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Pelvic drop occurs when the stance leg hip abductors are weak, leading to hip 

drop or a Trendelenburg sign on the ipsilateral side, such that there is a resulting 

downward obliquity of the opposite hip during its swing phase.  Pelvic drop is named 

based on the stance leg (see Figure 1). 

 

Figure 1 – Example of left frontal plane pelvic drop.  The runner is in left stance  
phase, and the pelvis is rotating about the left hip, such that the right  
posterior superior iliac spine (PSIS) has dropped below horizontal. 

 

Electromyography has shown that a hip abduction moment is created by the GM, and to 

some extent the tensor fascia, during the stance phase of running.  At FS, these muscles 

eccentrically contract to control hip adduction, and then concentrically contract from the 

support phase into propulsion to create hip abduction.26  Weakness in the hip 

musculature, especially the abductors, may impair efficient transference of forces, 

increase thigh adduction, and lead to pelvic drop. 

Frontal Plane Pelvic Drop and Gluteus Medius Muscle Performance 
 

One specific biomechanical factor that may be associated with frontal plane 

pelvic drop is the presence of GM weakness (Specific Aim #1).  Research appears to 
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indicate a relationship between hip abduction weakness and injury.  Fredericson et al.52 

studied 24 distance runners (14 females, 10 males) with iliotibial band syndrome (ITBS) 

to assess differences in hip abduction strength as compared to 30 controls (14 females, 16 

males).  They found that runners with ITBS had weaker hip abductors on their injured 

side compared to their noninjured side and controls.  After six weeks of physical therapy, 

hip abduction strength of the injured side was at least equal to that of the noninjured and 

control limbs, and 22 of the 24 athletes were pain free.  Additionally, Leetun et al.51 

found significant differences between hip abduction for 60 male and 90 female collegiate 

basketball and track athletes; males demonstrated increased strength and core stability.  

Athletes who were injured during the season showed statistically significant deficits in 

hip abduction strength. 

Niemuth et al.53 also identified an association between hip abductor muscle group 

strength imbalances and LE overuse injuries in thirty recreational runners with a single 

leg overuse injury.  Cichanowski et al.54 identified injured limb hip abductors to be 

significantly weaker (p = 0.003) than the noninjured side and the control group  

(p = 0.010) in a group of thirteen female collegiate athletes with unilateral patellofemoral 

pain syndrome.  These findings may suggest that strength imbalances may be associated 

with or predispose an athlete to injury, injuries may lead to strength imbalances, or this 

cascade of events may differ between genders.  Deficits in hip abduction strength could 

in theory correspond to pelvic drop on the contralateral side.  Therefore, the presence of 

pelvic drop and/or hip abduction weakness could be a significant evaluative finding. 
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If, however, factors exist other than GM strength that impact frontal plane pelvic 

drop, and the treatment plan focuses solely on strengthening, the clinician may not reduce 

pelvic drop or decrease the risk of injury.  Unfortunately, there is a research void 

assessing the underlying causes of frontal plane pelvic drop in runners.  Factors such as 

GM activation pattern and changes in frontal plane pelvic drop have not been addressed 

in the running population (Specific Aim #2).  Previous research has identified changes in 

GM EMG latency and amplitude in subjects with chronic conditions.55-58  Beckman et 

al.55 reported a decreased latency of GM muscle recruitment in subjects with hypermobile 

ankles as compared to a healthy control group.  In subjects with unilateral hip 

osteoarthritis, Sims et al.56 found an increased GM muscle activation amplitude 

bilaterally as compared to the control group; while, hip abductor strength was not 

significantly different between the two groups.  These findings indicate GM muscle 

dysfunction related to onset or amplitude, not necessarily strength.  If there is a change in 

the muscle’s activation pattern in an injured runner, then addressing GM strength alone 

may not be sufficient to return the runner to premorbid status. 

Additionally, GM muscle fatigue could contribute to frontal plane pelvic drop 

(Specific Aim #3).  Previous research has shown that hip abduction peak torque and 

fatigability were not significantly correlated, suggesting that strength and fatigability 

should be evaluated separately.59  Meanwhile, Eggen et al.60 found that knee valgus 

movement increased following isometric hip abductor fatigue.  Considering the stance 

phase of running is a closed kinetic chain activity, the LE might compensate for frontal 
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plane pelvic drop via increased genu valgum.  These studies may point toward a 

relationship between frontal plane pelvic drop and GM muscle fatigue. 

Frontal Plane Pelvic Drop, Kinetics, and Running Performance 

Previous research has demonstrated a vGRF of 2 to 5 times body weight during 

running.61, 62  Altered gait mechanics, however, can create a mechanically disadvantaged 

system, and lead to an increased vGRF.  Ferber et al.63 found that female runners with a 

history of LE stress fracture had a 36% greater vGRF (3.87 versus 2.48 times BW (body 

weight)) compared to controls.  Without compensation, an increased frontal plane pelvic 

drop could create a mechanically unstable system, which could result in an increased 

vGRF.  This scenario might not only increase the risk of injury, but also lead to a 

decreased running performance. 

Previous research has shown a relationship between vGRF and metabolic cost 

during steady-state level running.64, 65  Running economy (RE), or the steady-state 

volume of oxygen (VO2) consumed at a given running velocity, has been strongly 

correlated with distance running performance.66-72  Factors that increase the energy 

required while running will increase VO2, leading to a cascade of events that increase RE 

and hinder running performance. 

Inefficient running gait mechanics, to include increased vGRF and vertical 

oscillation of the body’s center of mass, have been associated with an increased RE, 

secondary to increased energy costs.73-75  Heise and Martin73 found two GRF variables, 

the total vertical impulse and net vertical impulse, demonstrated statistically significant 

positive correlations (r = 0.62, r = 0.60, respectively) with RE.  Based on this 
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relationship, the authors concluded that 40% of RE variability could be physiologically 

attributed to greater overall muscle support required during ground contact.  This 

relationship can be further substantiated by Abe et al.76, who identified a significant 

correlation between the eccentric to concentric ratio of the vastus lateralis muscle and 

metabolic energy costs in seven male novice distance runners during a ninety minute run. 

As described previously, an increased frontal plane pelvic drop might in theory 

contribute to increased vGRF or muscle activity requirements.  Therefore, research is 

needed to quantify the relationship frontal plane pelvic drop and RE (Specific Aim #4).  

If a direct relationship exists between frontal plane pelvic drop and RE, then a runner 

with increased frontal plane pelvic drop may reach a point where he is metabolically 

unable to perform at the same level as a healthy runner.  A better understanding of this 

relationship is therefore needed when working with athletes in order to optimize their 

running performance. 

PURPOSE, SPECIFIC AIMS, AND HYPOTHESES 

 To begin to fill this research void, the purpose of this investigation was to 

quantify the relationship between frontal plane pelvic drop in runners and isometric GM 

muscle strength (Specific Aim #1), GM muscle timing (Specific Aim #2), GM muscle 

fatigue (Specific Aim #3), and metabolic energy demands (Specific Aim #4) during 

running. 

Specific Aim #1 

To examine the relationship between isometric GM muscle torque and the magnitude of 

frontal plane pelvic drop seen during the stance phase of running. 
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Hypothesis 1 - It is hypothesized that subjects with decreased isometric GM 

muscle strength will have more frontal plane pelvic drop of the ipsilateral limb 

during stance phase. 

Specific Aim #2 

To investigate whether GM muscle activation patterns are linked to frontal plane pelvic 

drop. 

Hypothesis 2 – There will be a delay in GM peak amplitude timing in runners 

with an increased frontal plane pelvic drop and the magnitude of the delay will be 

correlated with the amount of pelvic drop. 

Hypothesis 3 – There will be a delay in GM muscle activation following initial 

contact in runners with an increased frontal plane pelvic drop and the magnitude 

of this delay will be correlated with the amount of pelvic drop. 

Specific Aim #3 

To assess the relationship between GM muscle fatigue rates and the degree of frontal 

plane pelvic drop. 

Hypothesis 4 - It is hypothesized that runners presenting with increased frontal 

plane pelvic drop will show a higher rate of GM muscle fatigue while running. 

Specific Aim #4 

To study whether the degree of frontal plane pelvic drop is related to changes in 

metabolic energy demands. 
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Hypothesis 5 - Increased frontal plane pelvic drop will result in increased energy 

demands, as indicated by RE, to compensate for an inefficient running gait. 
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CHAPTER 2 - METHODS 
 

SUBJECTS 
 

Subjects were recruited by posted advertisement from the student body at Virginia 

Commonwealth University to establish a convenience sample.  All subjects provided 

informed consent in accordance with the Virginia Commonwealth University institutional 

review board and completed a self-report running questionnaire regarding their general 

health and running (see Appendix 1).  The questionnaire was used as a screening tool to 

establish whether the subject fit within the guidelines of the inclusion and exclusion 

criteria.  Subjects were included if they ran five or more miles per week in order to obtain 

an active, recreational runner sample.  Exclusion criteria included:  a history of 

cardiopulmonary problems, LE neuromuscular impairment preventing the subject from 

running safely, or physician’s orders prohibiting running. 

MEASURES 
 
Gluteus Medius Muscle Isometric Torque 
 

Subjects’ GM isometric force production was tested with a hand-held 

dynamometer using a method that was previously reported as reliable.77-80  This method 

positions the subject in side lying on a treatment table with a pillow placed between the 

knees to approximate 10° hip abduction for the leg to be tested.  A strap was secured 

around the plinth table and subject just proximal to the iliac crest to stabilize the trunk.  A 
 27 



www.manaraa.com

28 
second strap secured the center of the hand-held dynamometer (Lafayette Instruments, 

Lafayette, IN) force pad just proximal to the lateral knee joint line.  The dynamometer 

uses a load cell-based system to measure static forces from 0.0 to 199.9 kg with an 

accuracy of ± 0.5% of the full scale and a sensitivity of 0.1 kg. 

With the subject in a relaxed position, the dynamometer was tarred and the 

baseline value recorded.  The subject was then instructed to raise his leg upward with 

maximal effort and hold for 5 seconds.  As the subject rested for 15 seconds, the 

maximum isometric force produced was recorded, and the dynamometer zeroed.  This 

procedure was repeated for a total of 4 trials (1 practice and 3 trials).  The subject was 

repositioned and the procedure repeated for the opposite leg. 

Gluteus Medius Muscle Activity 

 With the subject positioned prone on a plinth table, rubbing alcohol was used to 

abrade the skin and reduce skin impedance over the GM prior to application of the sEMG 

(surface electromyography) electrodes (Ambu® Blue Sensor SP, Denmark).  To collect 

bilateral GM activity, two 38 mm diameter sEMG electrodes were attached on each side 

parallel to the GM muscle fiber.  The proximal electrode was approximately one-inch 

below the midpoint of the iliac crest, and the second electrode one inch distal from the 

center of the first electrode.81  The sEMG ground electrode was placed over the left 

fibular head.  sEMG data was sampled at 1000 Hz.  The sEMG unit (MyoSystem 1200™, 

Noraxon, Scottsdale, AZ) has a sensitivity of ±1 µV, a bandwidth of 10 to 500 Hz, and a 

common mode rejection ratio of 130 dB. 
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Kinematics 

Kinematic three-dimensional data on pelvic motion were collected at a sampling 

rate of 60 Hz using a 6 degree-of-freedom electromagnetic kinematic tracking system 

(MotionMonitor™ version 7.0, Innovative Sports Training, Chicago, IL).  The system 

has a spatial resolution of 0.5 mm of translation and 0.1° rotation.  To reduce noise 

associated with the treadmill (Cateye EC-T220, Boulder, CO) motor, a Faraday shield 

made of copper mesh was fitted over the motor.  The transmitter was placed on a wooden 

support that straddled the back of the treadmill to center the transmitter approximately  

79 cm behind the subject and 84.5 cm above the treadmill.  The transmitter was oriented 

with the subject facing the +x direction, +y to the subject’s right, and +z towards the 

ceiling.  With the subject standing on the treadmill Tuff-Skin® was applied over bilateral 

PSIS (posterior superior iliac spine) followed by double-sided tape to hold the kinematic 

sensors (Polhemus Fastrak®, Colchester, VT).  A harness belt further secured the PSIS 

markers, while a Velcro trunk harness tethered the sEMG and kinematic sensor leads to 

reduce noise secondary to motion artifact.  Both the waist and trunk harnesses were 

further secured with Co-Flex® to prevent slipping.  The difference between the right and 

left PSIS sensor readings served as the comparative standard for quantification of frontal 

plane pelvic motion.  Using a difference signal removes the common signal associated 

with skin/sensor movement.  Subtracting an initial baseline position also eliminates 

measurement errors associated with sensor placement. 
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Metabolic Energy 

 The rate of metabolic energy consumption (VO2 consumption and volume of 

carbon dioxide (VCO2) production) was measured using ventilatory expired gas analysis 

(SensorMedics, Yorba Linda, CA).  Ventilatory expired gas analysis was obtained using 

a metabolic cart (Vmax Spectra29, SensorMedics, Inc., Yorba Linda, CA).  The 

metabolic measurement system and flow sensor were calibrated prior to each test.  The 

oxygen and carbon dioxide sensors were calibrated using gases of known oxygen, 

nitrogen, and carbon dioxide concentrations prior to each session.  Open spirometry 

methods were used.  VO2 consumption and VCO2 production were measured as a 

function of time.  The volume was then normalized to the subject’s BW for comparison.  

Ambient air with known oxygen concentration was inhaled through a mask that covered 

the subject’s mouth and nose, and measurement of the volume and percentage of O2 

expired was used to calculate the amount of O2 consumption. 

Foot-strike 

 Ground reaction force data were used to identify FS during the treadmill run.  A 

single load cell was attached to the rear of the treadmill, in place of the treadmill’s right 

supporting foot.  The signal from the load cell was amplified and low pass filtered at  

500 Hz (Model SGA Interface, Inc., Scottsdale, AZ).  The amplifier / load cell 

combination was found to be linear with a sensitivity of 0.11 kg/v.  The load cell 

recorded both left and right foot contacts.  To distinguish left and right FS, a trigger was 

depressed just prior to a right FS once during each 10-second data collection period.  A 

positive voltage change in both the load cell and trigger data were associated with 
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increased loads on the treadmill secondary to FS or trigger depression, respectively.  FS 

was delineated by the rising edge of this signal from a –5v baseline; whereas trigger onset 

corresponded to a positive voltage change from a 0v baseline. 

 Load cell, trigger, and sEMG data were collected via a 16 channel differential 

input 12 bit A/D card (Measurement Computing™, Norton, MA) (see Appendix 2). 

 

EXPERIMENTAL SET-UP 

 With the consent form signed and the questionnaire completed, the subject was 

placed in supine and the distance from the greater trochanter to knee joint line measured.  

The subject’s isometric GM force was then tested.  The subject was then positioned in 

prone on the plinth table and sEMG electrodes placed over the subject’s GM.  The 

subject was then asked to stand on the treadmill while kinematic markers and sEMG 

cables were attached and secured in place.  Once cables were tethered to the subject’s 

midback and suspended from the ceiling, the subject was asked to march in place to 

ensure the cables did not hinder movement (see Figure 2).  After calibration of the 

metabolic measurement system and flow sensor, the mask was secured over the subject’s 

mouth and nose. 
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   Figure 2 – Experimental set-up. 

 

TREADMILL PROTOCOL 
 
 Following set-up and calibration of the sEMG, electromagnetic, and metabolic 

systems, subjects were asked to stand statically in anatomical position on the treadmill 

while baseline data were collected.  Baseline sEMG and kinematic data were collected 

for 10 seconds, whereas, metabolic data were collected for two minutes.  Subjects were 

then asked to begin a five-minute warm-up on the treadmill.  Subjects were instructed to 

increase their running speed over the five-minute warm-up to reach a self-selected, 

comfortable, maintenance pace, up to 12.0 mph, which could be maintained for 30 

minutes.  A time zero sEMG and kinematic data collection were made following the five-

minute warm-up.  The subject continued to run at this pace for 30 minutes.  Kinematic 

and sEMG data were collected synchronously in 10-second increments every two 

minutes; while metabolic data were collected continuously for the entire 30 minutes.  
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After the data collection period, the speed was reduced to 3.0 mph, and the subject was 

instructed to cool-down over a five-minute period. 

DATA PROCESSING AND ANALYSIS 
 
 Kinematic and sEMG data processing were performed using custom software 

written in the MATLAB™ (MathWorks Inc, version 7.1) programming language (see 

Appendix 3).  GM isometric torque and metabolic energy data analyses were performed 

in Microsoft Excel. 

Gluteus Medius Muscle Isometric Torque 

For Specific Aim #1, average maximum GM muscle isometric force was 

calculated for each leg using the recorded forces minus baseline.  To normalize for BW, 

average maximum GM muscle isometric force in kilograms was converted to Newtons to 

obtain a unit of force using the following equation: 

2/
(( *0.161) )*(9.807 )kg m s

GM F BW F= +  

where: 

GM F = gluteus medius muscle isometric force (Newtons) 

BW = body weight (kilograms) 

Fkg = recorded gluteus medius muscle isometric force (kilograms). 

Newtons were then converted to torque using the thigh length as the moment arm: 

GM T = GM F x ma 

  where: 

  GM T = gluteus medius muscle isometric torque (Nm) 



www.manaraa.com

34 
  GM F = gluteus medius muscle isometric force (Newtons) 

  ma = thigh length (meters). 

Foot-strike 

 Trigger data were first analyzed to distinguish left and right FS.  Trigger onset 

was defined as the frame where the voltage was greater than 1v.  Meanwhile, FS onset 

occurred when voltage increased from a –5v baseline.  Using the trigger onset frame as a 

marker, a right FS would correspond to the first FS following this trigger.  Once this right 

FS was identified, foot contact before and after would be classified as alternating left and 

right FS.  The frames for left and right FS were retained for later use. 

Kinematics 

 Standing baseline x, y, and z data for the left and right sides were first averaged 

over the 10-seconds of data.  Then, baseline pelvic angle was calculated using the 

averaged 3-dimensional data to find the angle between the left and right PSIS relative to a 

horizontal plane as shown in Figure 3. 

   

c 

a 
θ 

b 

Figure 3 – Calculation of the angle (θ) between a line and a plane. 
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Baseline pelvic angle was thus obtained using the following equation: 

( ) ( )( ( ) ( ) )2 2 21sin /BL a c b aθ−⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
+ , or 

1 2 2(sin (( ) / ( (( ) ( ) ( ) )))BL aveLz aveRz aveLx aveRx aveLy aveRy aveLz aveRzθ−= − − + − + − 2

 
 where: 

 BL = baseline, relative to the left side (degrees) 

 aveLz, aveLx, aveLy = average of the left side z, x, and y direction data (mm) 

 aveRz, aveRx, aveRy = average of the right side z, x, and y direction data (mm). 

 

 For each of the sixteen data collection points during the run, pelvic angle was then 

calculated relative to the left side for the entire 10-second data collection using the 

following equation: 

1 2 2deg (sin (( ) / ( (( ) ( ) ( )) ))L Lz Rz Lx Rx Ly Ry Lz Rz BLθ−= − − + − + − 2 −  

 where: 

 Ldeg = left pelvic angle (degrees) 

 Lz, Lx, Ly = left side z, x, and y direction data (mm) 

 Rz, Rx, Ry = right side z, x, and y direction data (mm). 

 

The pelvic kinematic data were then divided into gait cycles for the left side using 

the first left FS to one frame prior to the subsequent left FS.  In order to represent the data 

relative to the gait cycle, the data were first fit using a cubic spline to produce a piecewise 

polynomial.  The polynomial was then evaluated and expanded to 1000 points to 
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normalize the data to represent 100% of a gait cycle.  Each gait cycle then had the same 

number of points to allow comparisons between gait cycles and point-by-point averaging. 

The minimum and maximum pelvic angles occurring during foot contact were 

identified for each gait cycle (see Figure 4).  The minimum (negative angle relative to 

horizontal) represented left frontal pelvic drop; while, the maximum (positive angle 

relative to horizontal) represented right frontal plane pelvic drop.  Left and right pelvic 

drop for all gait cycles were ensemble averaged to obtain a left and right pelvic angle for 

the ten second data collection period (see Figure 5).  The absolute value of the left pelvic 

angle was used in the analyses. 
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 Figure 4 – Identification of left and right pelvic drop. 
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Figure 5 – Pelvic angle over a 10-second trial, showing 13 gait cycles  
in this case.  Left and right pelvic drop for each gait cycle  
were ensemble averaged to obtain the average left and right  
pelvic drop for the 10-second period. 

 

Gluteus Medius Muscle Activity 

For Specific Aim #2, identification of GM peak EMG amplitude and onset 

activation were determined for each gait cycle.  sEMG data were processed with a root 

mean squared time constant of 25ms.  The load cell FS data served as the temporal event 

marker from which the time of GM peak EMG amplitude and onset were linked. 

Gluteus Medius Muscle Peak Amplitude 
 
 For each gait cycle, left and right maximum amplitude of GM activity was 

identified for each gait cycle, and the mean peak amplitude calculated for the 10-second 

block.  Average peak amplitude was then calculated across all blocks for later use in 
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determining threshold for left and right GM onset.  Time of peak GM amplitude was 

found, and the median time of peak amplitude for each 10-second block calculated. 

Gluteus Medius Muscle Onset 
 

Fifty percent of the left and right average peak amplitude was calculated and used 

as the threshold from which left and right GM onset was identified, respectively.  The 

cubic spline of bilateral sEMG data for each gait cycle was performed, followed by 

evaluation of the polynomial and expansion of the data to 1000 points to normalize to the 

data to 100% of the gait cycle.  Thus, sEMG data could be compared across gait cycles 

and each onset demarcated as a percent of that cycle.  The first frame where sEMG 

amplitude was greater than this threshold was marked as GM onset (see Figure 6).  Since 

the GM has been shown to turn on at approximately 85% of the gait cycle (terminal 

swing) and continue to 25% (midstance), identification of GM onset began at 51% of the 

gait cycle (when the GM should be off) and continued to 100%.  If onset was not located 

in this interval, identification then resumed to the start of the data at 0%, and continued to 

50% if necessary.  This process was repeated for each gait cycle, and the median GM 

onset identified for the left and right sides for the 10-second block. 
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Figure 6 – Identification of GM sEMG threshold and onset.  One 10-second data  

collection is represented, with 13 gait cycles in this case. 
 
 To create a timeline (see Figure 7) for both the time of peak amplitude and onset 

of sEMG, median values found above were transformed.  A value of zero represented FS, 

and corresponded to 0% of the gait cycle.  If the peak amplitude and onset times were 

greater than 500, 1001 was subtracted, and the absolute value of this number taken.  If the 

value was less than or equal to 500, it was simply made negative.  Thereby, amplitudes 

and onset times occurring prior to foot contact (>500) were positive; while, times after 

foot contact (<=500) were negative.  A tenth of these values then represented a 

percentage of the gait cycle. 
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 Figure 7 – Transformation of median sEMG data to percent gait cycle. 

Gluteus Medius Muscle Fatigue 

 For Specific Aim #3, sEMG raw data were filtered from 20 to 200 Hz.  A Fast 

Fourier Transform (FFT) was performed for the left and right sides for the entire 10-

second running block.  The area under the FFT curve was calculated, and the median 

frequency corresponded to the frequency at 50% of this area.  This process was repeated 

for each block, and the median frequency plotted against time.  A first order regression 

line was fit to these data and the slopes recorded (see Figure 8). 
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Figure 8 – Example of one subject’s gluteus medius median frequency plotted versus  

Gluteus Medius Median Frequency vs. Time
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time.  Based on the first order regression line, the slope was found to be  
–2.07.  A negative slope would indicate fatigue. 

 

Metabolic Energy 

 For Specific Aim #4,VO2 data were averaged between minutes 0 to 5 and 25 to 30 

of the run, to obtain start and end VO2.  To normalize for the subject’s self-selected 

running speed, VO2 was then converted to RE using the following equation: 

1 1 1 1 1 1 1
2( * * ) ( * *min ) / ( * ) / 60(min* )1RE ml kg km VO ml kg speed km hr hr− − − − − − − −= . 

STATISTICAL ANALYSIS 
 
 Average pelvic drop for each block were averaged over the 30-minute run for use 

in statistical analyses for Specific Aim #1 and 3.  Average pelvic drop between minutes 0 

to 4 and 26 to 30 were calculated and a difference obtained for use with the metabolic 

energy data for Specific Aim #4.  Analyses were performed using SPSS® version 14.0.  
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For all tests, α = 0.05 was used as the significance level.  For the purpose of evaluating 

Specific Aims #1, 2, and 3, a Pearson’s Correlation was used to analyze the relationship 

between GM torque production, muscle onset, peak amplitude timing, and fatigue; and 

the degree of frontal plane pelvic drop.  Here, frontal plane pelvic drop was the 

dependent variable; while, GM torque production, muscle onset, peak amplitude timing, 

and fatigue were the independent variables.  For Specific Aim #4, a Pearson’s 

Correlation was run to assess the relationship between ΔRE and Δpelvic drop.  ΔRE was 

the dependent variable, and Δpelvic drop the independent variable.  Following analysis of 

the first ten subjects, a power analysis was conducted using nQuery Advior® 6.0. 
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CHAPTER 3 - RESULTS 
 

 Data from the first 10 subjects (5 males, 5 females) (mean 25.9 years, 172.97 cm 

height, 70.08 kg weight, 23.42 miles run per week, see Appendix 4) served as pilot data.  

Pearson’s Correlations (R) between the average pelvic drop of the left (Table 1) and right 

(Table 2) sides and the independent variables, as well as resulting effect size based on 

80% power for Specific Aims #1, 2, and 3 are summarized below. 

 

Table 1 – Summary Statistics for Left Pelvic Drop and the Independent Variables. 
 

 Torque 
(Aim #1) 

Time of Peak 
(Aim #2) 

Time of Onset 
(Aim #2) 

Fatigue 
(Aim #3) 

Correlation (R) -0.620 -0.017 -0.314 0.583 

p-value 0.056 0.962 0.377 0.077 

Subjects needed 
for 80% power 

18 27157 78 21 

 
 

Table 2 – Summary Statistics for Right Pelvic Drop and the Independent Variables. 
 

 Torque 
(Aim #1) 

Time of Peak 
(Aim #2) 

Time of Onset 
(Aim #2) 

Fatigue 
(Aim #3) 

Correlation (R) -0.210 -0.669 -0.369 -0.077 

p-value 0.561 0.034 0.294 0.833 

Subjects needed 
for 80% power 

176 15 56 72 

 43 
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Pearson’s Correlation for Specific Aim #4, the relationship between ΔRE and 

Δfrontal plane pelvic drop, yielded an R = 0.327, p = 0.356, with a calculated sample size 

of 72 to achieve 80% power. 

Based on the power analyses, 11 additional subjects (4 males, 7 females) were 

recruited for Specific Aims #1, 2, and 3 (mean age 24.55 years, 173.76 cm height, 71.13 

kg weight, and 19.82 miles run per week).  In these additional subjects, metabolic data 

were not collected, only kinematic, GM torque, and GM sEMG data were gathered.  

Demographics and history of running-related injuries in the past 6 months for the 21 

subjects are summarized in Appendix 4.  Mean demographics and ranges for the 21 

subjects were:  age 25.19 years (19 - 34 years), height 173.39 cm (152.4 - 193.04 cm), 

weight 70.63 kg (52.16 - 102.06 kg), and 21.53 average miles run per week (5 - 50 

miles).  None of the subjects had an injury causing a decrement in running performance 

at the time of data collection.  A dependent t–test showed there was no significant 

difference between the first and last group of subjects for age (p = 0.600), height  

(p = 0.889), weight (p = 0.842), average number of miles run per week (p = 0.212), or 

self-selected running speed during data collection (p = 0.288). 

KINEMATICS 

 Left and right side pelvic drop angles for each 2-minute data collection period 

over the 30 minute run, along with the resulting average and standard deviations are 

presented in Appendix 5.  An ICC was performed to assess the test/retest reliability of the 

pelvic drop measure in five subjects and found to be 0.80, demonstrating good reliability.  

The standard error of the mean (SEM) was 0.36°.  Average pelvic angle and standard 
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deviations across all subjects (n = 21) are depicted in Figures 9 and 10 for the left and 

right sides, respectively. 
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 Figure 9 – Left side average maximum frontal plane pelvic drop across the  
30-minute run.  Error bars indicate standard deviations.  An 
increasing angle of pelvic drop from minute 0 to 30 implies pelvic  
drop increased. 

 

 For the left side, the average frontal plane pelvic drop was 10.94º ± 1.67°.  When 

looking at the left side average pelvic drop depicted in Figure 9, the observed trend was 

one of slight increased pelvic drop, from 9.53º ± 3.26º at minute zero to 11.87º ± 4.39º at 

minute 30.  From the start and end means, effect size was calculated as Cohen’s d = 0.61. 
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 Figure 10 – Right side average maximum frontal plane pelvic drop across the  

30-minute run.  Error bars indicate standard deviations. 
 

 On the right side, the average pelvic drop was 7.57º ± 1.18°.  The overall trend of 

the right side demonstrates a fairly constant average pelvic drop across the 30 minute run 

(see Figure 10).  The average starting pelvic drop was 7.48º ± 2.83º, and the average 

pelvic drop at minute 30 was 8.07º ± 3.56º.  Using the start and end pelvic drop means, 

n = 21 
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the effect size was calculated as Cohen’s d = 0.18.  When comparing minute 30 means 

for the left and right sides, the effect size was Cohen’s d = 0.95. 

Standard deviations and SEM were calculated for subjects 1-10 and 11-21 for 

both the left and right sides (see Table 3).  These values demonstrated small variations in 

the pelvic drop measure, with little variation due to randomness.  A dependent t-test 

verified no statistically significant difference in pelvic drop between the first ten and last 

eleven subjects (p = 0.101, left and p = 0.792, right).  The 95% confidence interval of the 

difference was between -5.48 and 0.58 (left), and -2.51 and 3.20 (right).  Data from the 

first ten and last eleven subjects could therefore be combined. 

 
Table 3 – Summary of standard deviations and SEM for pelvic drop data. 
 

Subject Group Standard Deviation SEM 

Left 1-10 3.65 1.15 

Left 11-21 3.14 0.99 

Right 1-10 2.77 0.88 

Right 11-21 3.65 1.15 

 

GLUTEUS MEDIUS MUSCLE ISOMETRIC TORQUE (Specific Aim #1) 

 Appendix 6 contains a summary table of GM average maximum isometric force 

and resulting torque data for the left and right sides of all subjects.  To assess the 

reliability of the GM isometric force measurement, an ICC was performed on the three 

repetitions for each leg in the 21 subjects and shown to be 0.90, demonstrating good 

reliability.  Figures 11 and 12 depict the relationship between each subject’s average 
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frontal plane pelvic drop and average maximum static torque for the left and right sides, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Left Side Pelvic Drop vs. Gluteus Medius Isometric Torque
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Figure 11 – Left side average maximum frontal plane pelvic drop versus  
gluteus medius muscle average maximum isometric torque. 

 

 The scatter plot of left side average frontal plane pelvic drop versus average 

isometric torque indicates a random relationship between these variables in this sample 

(Figure 11).  In turn, the Pearson’s Correlation for the left side was found to be  
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R = -0.212 (p = 0.356), indicating a poor negative correlation between frontal plane 

pelvic drop and isometric torque for the left side. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Right Side Pelvic Drop vs. Gluteus Medius IsometricTorque
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Figure 12 – Right side average maximum frontal plane pelvic drop versus  
gluteus medius muscle average maximum isometric torque. 

 

The right side scatter plot demonstrating the relationship between average frontal 

plane pelvic drop and average maximum isometric torque again shows a fairly random 
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association between these two variables (Figure 12).  The right side Pearson’s Correlation 

was poor, R = 0.022 (p = 0.925). 

The relationship between frontal plane pelvic drop for each data collection period 

and torque was also investigated.  Pearson’s Correlations showed no significant 

correlation on either the left or right side between frontal plane pelvic drop and torque for 

any of the data collection periods during the 30-minute run. 

GLUTEUS MEDIUS MUSCLE PEAK AMPLITUDE TIMING (Specific Aim #2) 

 Median left and right side time of GM sEMG peak amplitude timing data and 

standard deviations for each 2-minute increment of the 30 minute run for all subjects, as 

well as each subject’s average sEMG peak timing, are presented in Appendix 7.  The 

Pearson’s Correlations between frontal plane pelvic drop and timing of GM peak 

amplitude for the left (R = -0.039, p = 0.479) and right (R = 0.029, p = 0.601) sides were 

both poor.  Figures 13 and 14 depict the relationship between these variables for the left 

and right sides, respectively.  A value of zero GM peak amplitude timing on the x axes 

would indicate that peak amplitude occurred at foot contact (0% gait cycle); whereas, 

positive values occurred prior to FS and negative values after FS.  A value of 10 would 

occur during terminal swing (10% of the gait cycle prior to FS). 
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Left Pelvic Drop vs. Gluteus Medius Peak Amplitude Timing
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Figure 13 – Left side average maximum frontal plane pelvic drop versus  
gluteus medius peak amplitude timing.  Average data for every  
10-second data collection period for each subject is represented.  
0% gait cycle represents foot contact, while positive values occur  
prior to FS and negative values after FS. 

 

 As indicated in Figure 13, left side GM peak amplitude occurred between  

48.30% and –29.60%, with an average of 6.52% ± 12.33%.  Peak amplitude therefore 

occurred sometime between left initial swing and left midstance, with the majority of 

cases clustered between left terminal swing and foot contact. 
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Right Pelvic Drop vs. Gluteus Medius Peak Amplitude
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Figure 14 – Right side average maximum frontal plane pelvic drop versus 
gluteus medius peak amplitude timing.  Average data for  
every 10-second data collection period for each subject is  
represented. 0% gait cycle represents foot contact, while  
positive values occur prior to FS and negative values after  
FS. 

 

 Figure 14 shows that right side GM peak amplitude occurred between 44.60% and 

–47.90% of the gait cycle, with an average time of peak at 1.82% ± 7.47% of the gait 

cycle.  Similar to the left side, time of peak amplitude was clustered just before the time 
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of right FS.  There were outliers, however, around the time of right initial and midswing, 

as well as right midstance. 

 To assess for changes across the 30-minute run, correlations were run for each of 

the data collection periods between frontal plane pelvic drop and GM peak timing.  

Pearson’s Correlations revealed no significant correlations for the left side.  Significant 

correlations were seen on the right at minutes 6 and 20.  At minute 6, however, one 

subject’s GM peak timing occurred much earlier than the rest of the group (46.3% versus 

a mean of 3.89% of the gait cycle for the remaining 20 subjects).  When this subject was 

removed from the analysis, the correlation was no longer significant (R = -0.246, p = 

0.296).  The scatter plot for minute 20 revealed a random relationship between right 

pelvic drop and GM peak timing.  Therefore, there was no relationship for either the left 

or right sides between pelvic drop and GM peak timing as a function of time. 

GLUTEUS MEDIUS MUSCLE ONSET (Specific Aim #2) 

 Appendix 8 contains summary tables for each subject’s median GM onset timing 

across the 30 minute run, as well as standard deviations.  Pearson’s Correlations between 

frontal plane pelvic drop and GM onset were R = -0.173 (p = 0.001) and R = -0.057  

(p = 0.296) for the left and right sides, respectively.  In both cases the correlations were 

poor.  Left and right scatter plots for the relationship between these variables are 

presented in Figures 15 and 16.  Interpretation of GM onset timing is the same as 

described above for GM peak amplitude timing; positive values occur prior to foot 

contact with zero representing FS. 
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Left Pelvic Drop vs. Gluteus Medius Muscle  Activity Onset

GM Activity Onset (% gait cycle) 
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Figure 15 – Left side average maximum frontal plane pelvic drop versus  
gluteus medius muscle onset timing.  Average data for every  
10-second data collection period for each subject is represented.   
0% gait cycle represents foot contact, while positive values occur  
during the swing phase prior to left FS. 

 

 As seen in Figure 15, there was considerable variability in the timing of GM 

onset, with a range of 49.7% to 4.75%, representing the early stages of left swing phase 

to just prior to left FS.  Timing of left side GM onset averaged 21.62% ± 15.74% of the 

gait cycle prior to foot contact.  This would be during left terminal swing phase. 
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Right Pelvic Drop vs. Gluteus Medius Muscle Activity Onset

GM Activity Onset (% gait cycle)
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Figure 16 – Right side average maximum frontal plane pelvic drop versus  
gluteus medius muscle onset timing.  Average data for every  
10-second data collection period for each subject is represented.   
0% gait cycle represents foot contact, while positive values occur  
during the swing phase prior to right FS. 

 

 Right side GM onset timing ranges were similar to the left side, with a range from 

49.7% to 0.6%, representing gait cycle times from early right swing phase to just prior to 

right FS.  The average right side GM onset was 18.53% ± 17.13%, corresponding to right 

terminal swing phase. 
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 The effect of time during the 30 minute run on the relationship between frontal 

plane pelvic drop and GM onset was investigated.  Pearson’s Correlations for the left and 

right sides for each of the data collection periods showed no significant correlations 

between these variables at any time point for either side. 

GLUTEUS MEDIUS MUSCLE FATIGUE (Specific Aim #3) 

 Appendix 9 contains tables summarizing GM fatigue rates for each subject during 

the 30 minute run.  Pearson’s Correlations between frontal plane pelvic drop and GM 

fatigue rate yielded poor correlations of R = 0.030 (p = 0.896) for the left and  

R = -0.001 (p = 0.996) for the right.  These relationships are presented in Figures 17 and 

18 as scatter plots for the left and right sides, respectively. 

 Although not included within Specific Aim #3, the relationship between the rate 

of pelvic drop and the rate of GM fatigue was investigated (see Figures 19 and 20, 

respectively).  For the left side, the Pearson’s Correlation was R = -0.123, p = 0.594; 

while, the right side was R = 0.103, p = 0.657. 
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 Left Pelvic Drop vs. Gluteus Medius Fatigue Rate

Rate of GM Fatigue
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Figure 17 – Left side average maximum frontal plane pelvic drop versus  
gluteus medius fatigue rate.  Each fatigue rate represents a  
subject’s slope of median frequency across the 30-minute run.   
Negative values (to the left of the dashed line) would be 
indicative of fatigue. 

 

 As shown in Figure 17, left GM fatigue rates clustered around zero, with the 

exception of one outlier.  The average GM fatigue rate was -0.015 ± 0.55, with a range of 

0.61 to -2.07.  Based on the data presented in Appendix 9 the subjects’ average median 

frequency at minute zero was 82.60 Hz ± 18.79 Hz, with a range from 45.70 Hz to  

114.80 Hz.  The average median frequency at 30 minutes was 82.69 Hz ± 21.06 Hz, with 

a range from 46.50 Hz to 113.90 Hz. 
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Right Pelvic Drop vs. Gluteus Medius Fatigue Rate

Rate of GM Fatigue
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Figure 18 – Right side average maximum frontal plane pelvic drop  
versus gluteus medius fatigue rate.  Each fatigue rate  
represents a subject’s slope of median frequency across the  
30-minute run.  Negative values would be indicative of fatigue. 

 

 Right side GM fatigue rates ranged from -1.64 to 1.48 with an average of 0.22 ± 

0.68.  The majority of subjects’ right side GM fatigue rates clustered between -1 to 1, as 

shown in Figure 18.  The average median frequency at minute zero was 75.27 Hz ±  

25.78 Hz, with a range from 29.40 Hz to 116.40 Hz.  At minute 30 the average median 

frequency was 82.82 Hz ± 21.71 Hz, ranging from 37.50 Hz to 112.60 Hz. 
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Rate of Left Pelvic Drop vs Gluteus Medius Fatigue Rate
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Figure 19 – Left side rate of maximum frontal plane pelvic drop  
versus gluteus medius fatigue rate. 

 

 As shown in Figure 19 and as indicated by the poor Pearson’s Correlation, GM 

fatigue rate was not correlated with the rate of pelvic drop.  In the presence of fatigue 

(rate of GM fatigue < 0), subjects did not exhibit an increased rate of pelvic drop as 

would be hypothesized. 
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Rate of Right Pelvic Drop vs. Gluteus Medius Fatigue Rate

Rate of GM Fatigue
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Figure 20 – Right side rate of maximum frontal plane pelvic drop  
versus gluteus medius fatigue rate. 

 

 As shown in Figure 20, few subjects experience GM fatigue (rate of fatigue < 0), 

and those who did experience fatigue did not have an increased rate of pelvic drop as 

would be expected.  In those subjects who did not have GM fatigue (rate of fatigue > 0), 

five experience an increased rate of pelvic drop, which was counterintuitive. 
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METABOLIC ENERGY (Specific Aim #4) 

 Table 4 summaries the average start (minute 0 though 5) and end (minute 25 

through 30) VO2, trial running speed, and resulting RE and ΔRE for the first 10 subjects. 

Table 4 – Summary of metabolic energy data.  Start data represents an average of  
minutes 0 to 5; while, end data represents the average of minutes 25 to 30.   
ΔRE was calculated as the difference between RE end and RE start. 
 

Subject VO2 Start 

(ml/kg/min) 

VO2 End 

(ml/kg/min) 

Speed 

(km/h) 

RE Start 

(ml/kg/km) 

RE End 

(ml/kg/km) 

ΔRE 

(ml/kg/km) 

1 32.09 31.91 10.78 0.050 0.049 -0.001 

2 32.97 36.65 10.46 0.053 0.058 0.005 

3 37.11 38.30 10.78 0.057 0.059 0.002 

4 38.81 42.48 10.3 0.063 0.069 0.006 

5 35.04 35.95 10.14 0.058 0.059 0.001 

6 32.78 43.91 10.46 0.052 0.070 0.018 

7 42.59 46.79 11.59 0.061 0.067 0.006 

8 41.57 44.13 12.07 0.057 0.061 0.004 

9 36.70 27.46 12.87 0.048 0.036 -0.012 

10 49.99 52.30 12.07 0.069 0.072 0.003 

 

 The Pearson’s Correlation for the relationship between ΔRE and Δfrontal plane 

pelvic drop was R = 0.327, p = 0.356, suggesting there was a poor association between 

these two variables as shown in Figure 21.  Based on this correlation, the calculated 

sample size needed to attain 80% power was 72.  Therefore, metabolic data collection 

was not continued on the last eleven subjects, as described previously. 
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Change in Running Economy vs. Change in Pelvic Drop

Change in Pelvic Drop (degrees)
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 Figure 21 – Change in running economy versus change in average  
maximum frontal plane pelvic drop.  The difference between the 
averages of minutes 25 to 30 (end) and minutes 0 to 5 (start) for 
RE and pelvic drop were calculated to determine change over the 
30 minute trial. 
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CHAPTER 4 - DISCUSSION 
 

 The purpose of this investigation was to quantify the relationship between frontal 

plane pelvic drop in runners and isometric GM muscle strength (Specific Aim #1), GM 

muscle timing (Specific Aim #2), GM muscle fatigue (Specific Aim #3), and metabolic 

energy demands (Specific Aim #4).  A better understanding of the connection between 

frontal plane pelvic drop and these variables would provide insight into the treatment of 

running-related injuries and the optimization of running performance. 

FRONTAL PLANE PELVIC DROP 
 
 The test/retest reliability of the frontal plane pelvic drop measure demonstrated 

good reliability.  The SEM calculated from the test-retest trials showed that differences in 

this measure greater than 0.36° could be attributed to factors other than random error.  

Additionally, standard deviations and SEM presented in Table 3 demonstrated that this 

kinematic measure had little variation accounted for by random error.  Average standard 

deviations for each 10-second data collection across all subjects were small for both the 

left (1.67°) and right (1.18°) sides, indicating small intra-subject/intra-trial variance.  The 

data presented in Figures 9 and 10 show a slight increased in average maximum pelvic 

drop for the left side, while the right side remained fairly stable throughout the 30-minute 

run.  This is further supported by the effect size of 0.61 for the left side, indicating a 

detectable change from minute 0 to minute 30; while, the right side had an effect size of 

 63 
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0.18 that would be considered small and difficult to detect.  Additionally, a comparison 

of minute 30 pelvic drop means for the left and right side resulted in an effect size of 

0.95, indicating a detectable difference between the two sides at minute 30. 

Although, previous studies have not investigated frontal plane pelvic motion over 

extended periods of running, Schache et al.82 did study pelvic motion over 5-second 

increments during treadmill running.  Schache et al. reported the average pelvic drop over 

three 5-second data collections in 10 subjects (9 males, 1 female) who ran at a speed 

consistent with their previously determined self-selected overground running speeds (8.9 

mph average) to be 7.6° ± 1.6° (range 5.9° to 10.6°) on the left and 6.9° ± 2.6° (range 

2.9° to 10.6°) on the right.  Average maximum pelvic drop values in the current study 

were consistent with those reported by Schache et al. 

Gluteus Medius Muscle Performance 

Gluteus Medius Muscle Isometric Torque (Specific Aim #1) 

 The purpose of Specific Aim #1 was to examine the relationship between 

isometric GM muscle torque and the magnitude of frontal plane pelvic drop seen during 

the stance phase of running.  It was hypothesized that subjects with decreased isometric 

GM muscle strength would have more frontal plane pelvic drop.  However, a random 

relationship and poor correlations were demonstrated between the average maximum 

pelvic drop and GM average maximum isometric torque, as shown in Figures 10 and 11.  

Thus, the hypothesis was not supported. 

 The use of hand-held dynamometry and a make test have limitations, to include 

tester strength and subject participation.  The use of a strap to secure the dynamometer 
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eliminated the effect of tester strength, which has previously been shown to be a 

limitation of hand-held dynamometry.83  A practice trial and recovery time between trials 

avoided error due to subject effort.  Additionally, the tester used consistent directions 

during testing to limit the potential influence of verbal feedback on subject motivation.  

The conversion of force measurements to torque allowed comparison across subjects by 

normalizing for BW and thigh length.  Lastly, only one tester performed the measurement 

and demonstrated good intratester, intrasession reliability (ICC = 0.90). 

 Prospective51, case-control46, 52, 53, and case-series54 studies have established a 

link between hip abduction isometric strength deficits and LE injuries.  Additionally, 

Ferber et al.63 demonstrated an association between increased vGRF and LE stress 

fractures in female runners.  Although both decreased hip abduction isometric strength 

and increased vGRF are linked to LE injuries, the relationship between decreased hip 

abduction static strength, increased vGRF, and/or frontal plane pelvic drop has not been 

established. 

This research aimed to investigate the link between GM isometric strength and 

frontal plan pelvic drop; however, it showed that static GM strength was a poor predictor 

of frontal plane pelvic drop.  One question should therefore be posed:  Is a static measure 

of GM strength appropriate to relate to dynamic measures? 

Based on the research findings, one should question whether a dynamic rather 

than static measure of GM strength would be more appropriate.  Clinically, qualitative 

observations during running gait analysis are typically linked to quantitative static 

strength assessments secondary to a lack of costly evaluative equipment or time.  These 
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findings suggest this strategy is not appropriate for hip abduction.  Future research is 

therefore needed to identify dynamic strength measures that would better predict 

biomechanical components of running gait. 

Gluteus Medius Muscle Activation Patterns (Specific Aim #2)The purpose of 

Specific Aim #2 was to investigate whether GM muscle activation patterns were linked 

to frontal plane pelvic drop.  It was hypothesized that there would be a correlation 

between increased pelvic drop and a delay in peak amplitude of GM muscle activation.  

As shown in Figures 12 and 13, bilateral GM peak amplitude timing tended to cluster 

between terminal swing and initial contact of the ipsilateral LE, regardless of the degree 

of pelvic drop.  Thus, the time of peak amplitude did not influence frontal plane pelvic 

drop, and the correlation between these variables was poor bilaterally. 

The finding that the time of peak amplitude clustered around the time of FS is 

consistent with that reported by Cappellini et al.24.  They showed that GM muscle activity 

ramped up during terminal swing, peaked around the time of FS, began a return to 

baseline just after FS, and reached baseline at approximately midstance.  They displayed 

this pattern for running at 5, 7, 9, and 12 km/h.  Although GM intensity increased with 

increasing running speed, at each running speed the GM pattern of activity and time of 

peak onset persisted. 

It was also hypothesized that there would be a delay in GM muscle activation 

following initial contact in runners with an increased frontal plane pelvic drop and the 

magnitude of this delay would be correlated with the amount of pelvic drop.  For both the 

left and right sides GM activation occurred between ipsilateral initial swing and terminal 
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swing, as shown in Figures 14 and 15.  There was no instance of activation following FS 

during the ipsilateral stance phase.  Bilaterally, timing of GM onset was variable during 

the swing phase.  The right side Pearson’s Correlation showed a significantly small 

relationship between frontal plane pelvic drop and timing of GM onset; however, the 

association was random as depicted in Figure 16.  Therefore, for both the left and right 

sides there was no relationship demonstrated between timing of GM activation and 

frontal plane pelvic drop.  The hypothesis was therefore rejected. 
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Gluteus Medius Muscle Activity

% Gait Cycle

-50-40-30-20-1001020304050

 

Mann et al. 

Current Research 

Figure 22 – A comparison of gluteus medius muscle activity during the gait  
cycle, as shown by Mann et al.26 and the current research. Positive  
values occur prior to foot contact, and negative values occur after  
foot contact. 

 
As seen in the bottom bar of Figure 22, GM time of onset averaged 20.08% ± 

16.51% of the gait cycle, and activity ceased at an average of -11.22% ± 14.18% of the 

gait cycle (where positive values indicate activity prior to FS, 0% represents FS, and 

negative values occurred after FS).  In comparison, Mann et al.26 reported GM onset to 

occur at 15%, and terminate at –20% (top bar).  Figure 22 shows that the GM onset of the 

subjects in the current study fired 5% of the gait cycle sooner than that reported by Mann 

et al., and terminated 10% earlier.  This change in GM activity may be due in part to 
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running speed.  In the current study, the average running speed was 10.74 km/hr; 

whereas, the speed in the study by Mann et al. was 12.07 km/hr.  Although Mann et al. 

did not present GM activity at a slower speed, they did show a 5% later onset and 10% 

earlier termination (overall 15% decrease in time of GM activity as a function of the gait 

cycle) from a running speed of 12.07 km/hr to 16.09 km/hr. 

Gluteus Medius Muscle Fatigue (Specific Aim #3) 

The purpose of Specific Aim #3 was to assess the relationship between GM 

muscle fatigue rates and the degree of frontal plane pelvic drop.  It was hypothesized that 

runners presenting with increased frontal plane pelvic drop would show a higher rate of 

GM muscle fatigue while running as compared to controls.  For both the left and right 

sides, the Pearson’s Correlations between average frontal plane pelvic drop and the GM 

fatigue rate were poor.  The hypothesis was therefore rejected. 

 As shown in Figures 16 and 17, the GM fatigue rates for the left and right sides 

clustered around zero, regardless of the degree of frontal plane pelvic drop.  There were 

five instances on the left side and six on the right where the fatigue rate was less than 

zero, suggesting fatigue.  In all but one of these for each side, however, the fatigue rate 

was still close to zero.  A GM fatigue rate that remained close to or greater than zero 

suggests that those subjects did not experience significant fatigue over the 30-minute run.  

The lack of GM fatigue in the majority of subjects leads to the following questions:  (1) 

Did some of the subjects adapt their running gait or muscle recruitment pattern? (2) Was 

there an effect of muscle temperature on the fatigue measure? (3) Did the subjects self-

select a speed at which they would minimize GM fatigue during the 30-minute run? 
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 It is possible that the varying rates of GM fatigue across subjects could be 

secondary to attempts to optimize or adapt their running gait, and in turn muscle 

recruitment strategy.  Three possible scenarios exist.  (1) Subjects could have adapted 

their technique prior to fatigue, in an attempt to prevent fatigue onset.  (2) Some of the 

subjects could have modified their performance after fatigue onset, in order to adjust and 

complete the run.  (3) Subjects did not experience fatigue, and there was no need to 

change their running strategy.  If subjects modified their running technique they, in turn, 

might be able to prevent the start of or further progression of GM fatigue.  Previous 

research has shown strategic changes in movement execution or postural control.84, 85  

Galganski et al.84 showed differences in movement execution with age, which the authors 

hypothesized was due to a “play-it-safe” strategy in older adults to compensate for 

decreased force generation accuracy and consistency.  Madigan et al.85 noted a postural 

change of slight forward lean in subjects following lumbar extensor fatigue, to control 

postural sway.  In the current study, it is plausible that subjects consciously or 

unconsciously made attempts to modify their running gait or muscle recruitment while 

running.  Unfortunately, it is not possible to tease out which subjects fell into the above 

three categories.  But attempts to optimize performance, regardless of the timing, might 

explain why an overall fatigue was not seen consistently across the 30-minute run. 

When looking at GM median frequency across the run, there were instances 

where there appeared to be either an initial downward fatigue rate, prior to a ramping, or 

simply a ramping during the first half of the data collection.  After this point, subjects’ 

median frequency tended to stabilize.  An effect of an insufficient warm-up period prior 
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to data collection, causing differences between subjects’ muscle temperature, could 

explain the changes in fatigue rates and low median frequencies observed initially.  As 

muscle temperature increases, median frequency also increases.86  In turn the use of 

median frequency to determine fatigue rates is confounded by a temperature effect.  

Using a 40% maximum isometric voluntary contraction of the vastus lateralis and 

recording median frequencies between 39º and 34º C, Madigan and Pidcoe87 found a 

linear relationship between EMG mean power frequency and muscle temperature.  The 

mean slope normalized to the initial EMG mean power frequency was 3.26% / ºC. 

Unfortunately, there is no previous research investigating a median frequency and 

GM muscle temperature relationship, or this relationship during running.  Although 

subjects were given a five-minute warm-up prior to the start of data collection, they were 

able to increase their speed as desired.  Therefore, variability was introduced to the rate 

of warm-up.  Even if warm-up speed was uniform across subjects, their rate of muscle 

temperature change would not be consistent across subjects.  To compensate for the 

effects of GM muscle temperature on median frequency, temperature measurements 

would need to be made at the start and end, as well as periodically throughout the run to 

establish the relationship between these variables and correct for temperature effects on 

EMG median frequency data within a subject. 

Based on the lack of muscle fatigue seen in the subjects, it is possible that the 

subjects self-selected a running speed that was not challenging enough to elicit fatigue.  

Therefore, future research should implement an incremental speed increase such that the 

subjects would eventually be challenged to the point of GM fatigue. 
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The 30-minute treadmill protocol was long enough that many of the subjects had 

considerable perspiration.  Although effort was made to create a comfortable running 

environment and sEMG electrodes were firmly secured during application, moisture still 

accumulated underneath the electrode as the subject perspired.  The presence of 

perspiration would improve conductivity, thus confounding sEMG data.  This, in addition 

to a muscle temperature effect, could explain changes in GM median frequency described 

above.  An incremental protocol would likely take less than 30-minutes of treadmill 

running to induce fatigue, thus reducing the amount of perspiration. 

Because GM isometric torque, timing of peak amplitude and onset, and fatigue 

rate were not correlated with pelvic drop, the question arises as to whether muscles other 

than the GM are key contributors to pelvic stability while running.  Future studies are 

needed to evaluate the influence of other proximal muscles on pelvic kinematics and 

running biomechanics.  In addition to hip abduction strength, these studies could include 

strength of other core stabilizing and proximal muscle groups to include abdominals, 

quadratus lumborum, and back extensors.  This would provide insight into whether there 

is an interaction between core muscles that provides proximal stability during running, as 

well as the degree to which each muscle contributes to this control.  These results may be 

of significance in the rehabilitation and athletic training settings as they imply that a 

rehabilitation program focused solely on GM strengthening will not decrease frontal 

plane pelvic drop, possibly resulting in suboptimal running performance. 

Since neither GM isometric torque, peak amplitude timing, activation onset, nor 

fatigue rate correlated with frontal plane pelvic drop, the question of whether frontal 
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plane pelvic drop is a suitable dynamic measure within the kinetic chain arises.  

Unfortunately, there are no previous studies investigating frontal plane pelvic drop and its 

relationship to other dynamic measures.  Typically, when observations of frontal plane 

pelvic drop are performed in a clinical setting, it is impossible to isolate this frontal plane 

motion at the pelvis.  Clinicians may think they are observing pelvic drop, but are 

influenced by changes elsewhere in the kinetic chain.  For instance, an increased frontal 

plane pelvic drop in a closed kinetic chain would also present more distally as thigh 

adduction and/or genu valgum in the absence of compensation. 

Therefore, is there a more robust measure that would encompass increased pelvic 

motion and its distal effects?  The use of an instrumented treadmill to provide vGRF data 

would provide more insight into the big picture.  Changes throughout the kinetic chain 

could be captured by vGRF.  Since vGRF has previously been connected with an 

increased injury rate, it would be helpful to link vGRF with changes in LE kinematics 

that could be more easily identified clinically.63 

To address these limitations and remaining questions, future studies would 

therefore include the use of an instrumented treadmill, LE kinematics, sEMG data on the 

core muscles, muscle temperature readings, and an incremented treadmill protocol.  

Using an instrumented treadmill and acquiring LE kinematics would provide data that 

could establish links between kinetics and joint movement.  LE kinematic data would 

allow calculation of joint torques while running, providing answers as to whether 

dynamic measures of strength correlate with pelvic drop.  sEMG data of the core muscles 

would help identify which muscles or interaction of muscles have the greatest effect on 
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kinetic and kinematic changes in running.  Lastly, muscle temperature data and an 

incremental protocol would address limitations with the GM median frequency in this 

research. 

Running Performance (Specific Aim #4) 

The purpose of Specific Aim #4 was to study whether the degree of frontal plane 

pelvic drop was related to changes in metabolic energy demands.  It was hypothesized 

that increased frontal plane pelvic drop would result in increased energy demands, as 

indicated by RE, to compensate for an inefficient running gait.  The Pearson’s 

Correlation between the change in frontal plane pelvic and RE was poor.  An increase in 

RE was not dependent on an increase in pelvic drop, as seen in Figure 21.  Therefore, the 

hypothesis was rejected. 

Allowing subjects to self-select their running speed seemed to result in study 

limitations.  Given that little change in RE was observed over the 30-minute run, the 

question of whether or not the self-selected speed was challenging for each subject seems 

appropriate.  It is plausible that subjects self-selected a speed that allowed them to 

maximally utilize their physiologic capabilities.  Thus, the subjects choose a speed, which 

would impose the least metabolic requirements while allowing them to complete the 30-

minute run without taxing physiological components.  Future studies would therefore first 

establish the subject’s maximal VO2.  Previous research has shown that when RE is 

expressed as a percentage of maximal VO2, the difference in RE between subjects is 

magnified.88  Trial speed for biomechanical data collection would then be selected based 

on a percent of the subject’s previously determined maximal VO2.  This would eliminate 
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the effect of subjects’ self-selecting speeds that may prove to be metabolically less 

demanding. 

Another possible limitation of this study was inclusion/exclusion criteria for 

average distance run per week.  A minimum of 8.05 km per week (5 miles per week) 

requirement may prove to have been too broad.  In turn, the sample included subjects 

who ran up to 80.5 km per week (50 miles per week) in preparation for a marathon.  

Although post-hoc testing for the correlation between ΔRE and miles run per week 

showed no interaction (R = -0.119, p = 0.743), more specific criteria, such as running an 

average of 5 to 10 miles per week, would create a more homogenous sample. 

Future studies collecting additional kinetic and kinematic variables, as described 

previously, would also allow investigation into whether interaction of these variables best 

correlates to RE.  Williams and Cavanagh75 studied the relationship between sagittal 

plane running kinematics and submaximal VO2 in 31 subjects who had been training at 

least 25 miles per week for the past several months.  They concluded that no single 

variable, but rather a weighted sum of variables explained variation in submaximal VO2. 

 In conclusion, GM static strength, peak activity and onset timings, and fatigue did 

not predict frontal plane pelvic drop.  Pelvic drop also did not have an effect on running 

performance, as indicated by RE.  One should therefore be weary of a GM centered 

treatment approach when addressing frontal plane pelvic instability in runners.  Future 

research into other core stabilizing muscles and their interactions could provide guidance 

into which muscles should be the focus of treatment in this patient population.  

Additional research should also include kinetic as well as LE kinematic analysis of 
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running gait to investigate the link between these variables, their relationship to muscle 

performance, as well as to running performance.
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RUNNING QUESTIONNAIRE 

Name:___________________________________________ 
 
Age:_______           Height:_______           Weight:_______ 
 
Average miles run per week:________ 
Longest run per week:________Minutes __________Miles 
Number of years running:_________ 
Running shoe brand/type:__________________________________________ 
How long have you worn your present shoes:_____________ 
 
Have you had a running-related injury in the past 6 months?  If yes, explain.  
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________ 
 
Do you now or have you ever experienced any of the following? 
 
 YES NO 

Decreased running 
speed/distance 

  

Running-related pain   

Leg weakness   

Tingling in your legs   

Dizziness   

Chest pain   

Sharp pain   

Cramping   

Fatigue   
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APPENDIX 2 
 

Pin-out for the ribbon cable going to the A/D card 
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APPENDIX 3 
 

MATLAB™ programs 

 The following pages contain the MATLAB™ programming language used to 

identify FS; frontal plane pelvic drop; GM onset, peak amplitude, and median frequency.  
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%______________________________________________________________________
% 
This program identifies the frames of foot strike and average left and 
%right maximum pelvic drop for the specified trial. 
%______________________________________________________________________ 
clear all 
clf; 
%----------------------------------------------------------------- 
%Input sensor, LC, and trigger data 
%----------------------------------------------------------------- 
trial=input ('Input minute number '); 
G=input('Select File for Data ', 's'); 
g=xlsread (G, 'a10:i10009'); 
%identify frame #, z, x, and y coordinates for the frame 
F=g(:,1); 
Lz=g(:,2); 
Rz=g(:,3); 
Lx=g(:,4); 
Rx=g(:,5); 
Ly=g(:,6); 
Ry=g(:,7); 
 
frame=g(:,1); 
LC=g(:,8); 
trigger=g(:,9); 
len=length(frame); 
%---------------------------------------------------------------------- 
%finds frame when trigger is turned on 
%---------------------------------------------------------------------- 
for i=1:len 
    if trigger(i)>1 
        frametrigger=frame(i); 
        break; 
    end 
end 
%---------------------------------------------------------------------- 
%finds frame after trigger on corresponding to the Right FS(flagR) 
%---------------------------------------------------------------------- 
for j=(frametrigger-1):len 
    if LC(j-1)==-5 && LC(j)>-5 
        flagR=frame(j); 
        break; 
    end 
end 
%---------------------------------------------------------------------- 
%finds all frames of FS prior to flagR 
%---------------------------------------------------------------------- 
for k=2:flagR 
    if LC(k-1)==-5 && LC(k)>-5 
        LConA(k)=frame(k); 
    end 
end 
A=LConA'; 
[row, col, v]=find (A);%erases zeros out of column 
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A=v;%column of FS prior to flagR 
%---------------------------------------------------------------------- 
%finds all frames of FS after flagR 
%---------------------------------------------------------------------- 
for m=flagR:(len-1) 
    if LC(m)==-5 && LC(m+1)>-5 
        LConB(m+1)=frame(m+1); 
    end 
end 
B=LConB'; 
[row, col, w]=find(B);%erases zeros out of column 
B=w;%column of FS after flagR 
%---------------------------------------------------------------------- 
%first element in B=flagR so R contact, L after... 
%---------------------------------------------------------------------- 
Blen=length(B); 
o=1; 
if Blen==1 
  RightB(o)=B; 
else 
    for n=2:2:Blen 
        RightB(o)=B(n-1); 
        LeftB(o)=B(n); 
        o=o+1; 
    end 
end 
%---------------------------------------------------------------------- 
%if length of A(prior to flagR) is even, first element is Right FS 
%---------------------------------------------------------------------- 
Alen=length(A); 
q=1; 
e=Alen/2; 
f=iswhole (e); 
for p=1:2:Alen 
    if f==1 
        LeftA(q)=A(p+1); 
        RightA(q)=A(p); 
    elseif p==Alen 
        LeftA(q)=A(p); 
    else 
        LeftA(q)=A(p); 
        RightA(q)=A(p+1); 
    end 
q=q+1; 
end 
%---------------------------------------------------------------------- 
%add A+B columns to become 1 column 
%---------------------------------------------------------------------- 
if Blen==1 
    LLC=LeftA'; 
    RLC=vertcat (RightA', RightB'); 
else 
    LLC=vertcat (LeftA', LeftB'); 
    RLC=vertcat (RightA', RightB'); 
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end 
llc=LLC; 
rlc=RLC; 
lenLLC=length(LLC); 
lenRLC=length(RLC); 
if lenLLC>lenRLC 
    rlc(lenLLC)=0; 
elseif lenRLC>lenLLC 
    llc(lenRLC)=0; 
end 
lc=[llc rlc]; 
Contact=['Contact', num2str(trial)]; 
xlswrite (Contact, lc);  
  
%--------------------------------------------------------- 
%load in files 
%--------------------------------------------------------- 
B=input('Select File for Baseline Angles ', 's'); 
b=xlsread (B,'a10:g10009'); 
aveLz=mean(b(:,2)); 
aveRz=mean(b(:,3)); 
aveLx=mean(b(:,4)); 
aveRx=mean(b(:,5)); 
aveLy=mean(b(:,6)); 
aveRy=mean(b(:,7)); 
BL=(asind((aveLz-aveRz)/(sqrt((aveLx-aveRx)^2+(aveLy-aveRy)^2+(aveLz-
aveRz)^2)))); 
BR=(asind((aveRz-aveLz)/(sqrt((aveLx-aveRx)^2+(aveLy-aveRy)^2+(aveLz-
aveRz)^2)))); 
  
%-------------------------------------------------------- 
%identify L angles from LIC to LIC to find L PSIS mvt 
%-------------------------------------------------------- 
flen=length(F); 
LEFT=zeros(flen,1); 
for i=1:flen 
    Ldeg=((asind((Lz(i)-Rz(i))/(sqrt((Lx(i)-Rx(i))^2+(Ly(i)-
Ry(i))^2+(Lz(i)-Rz(i))^2))))-BL);%in degrees 
    LEFT(i)=Ldeg; 
end 
  
l=length(llc); 
  
%-------------------------------------------------------------------- 
%Find Left and Right Min during each gait cycle, polynomial fit, 
average curve 
%-------------------------------------------------------------------- 
  
for i=1:l-1 
    a=i; 
    b=i+1; 
    clear ft; 
    ft=llc(a):llc(b)-1;%identifies each gait cycle data 
    ftlen=length(ft); %length of gait cycle 
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    la=LEFT(ft);%pelvic motion for corresponding gait cycle 
    cLC=LC(ft); 
    for j=2:1:ftlen 
        x1(1)=0; 
        x1(j)=x1(j-1)+(1000/(ftlen-1)); 
    end 
    for jj=2:1:ftlen 
        x2(1)=0; 
        x2(jj)=x2(jj-1)+(1000/(ftlen-1)); 
    end 
    x1=x1'; 
    x2=x2'; 
    xx=spline(x1,la);%cubic spline 
    yLC=spline(x2,cLC); 
    t=ppval(xx,x1); 
    tLLC=ppval(yLC,x2); 
    norm=(0:1:1000); 
    s=(ppval(xx,norm)); 
    sLLC=(ppval(yLC,norm)); 
    qq(:,i)=s'; 
    LMin(i)=min(s(1:250)); 
    RMin(i)=max(s(400:1000)); 
    qLC(:,i)=sLLC'; 
    clear x1; 
    clear x2; 
end 
  
aveqq=mean(qq');%ensemble average of kinematic data 
figure(2) 
plot(aveqq); 
hold on 
  
aveqLC=mean(qLC');%ensemble average of LC data 
plot(aveqLC, 'k'); 
title('Left Ensemble Average'); 
hold off 
  
%------------------------------------------------------------------- 
%Find Left and Right Average pelvic drop  
%------------------------------------------------------------------- 
AveLMin=mean(LMin); 
AveRMin=mean(RMin); 
ave=[AveLMin AveRMin]; 
  
%------------------------------------------------------------------- 
%Save pelvic ROM for all cycles, and average left and right pelvic drop 
%------------------------------------------------------------------- 
Degree=['Degree', num2str(trial)]; 
xlswrite(Degree, LEFT); 
AveMin=['AveMin', num2str(trial)]; 
xlswrite(AveMin, ave); 
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%______________________________________________________________________ 
%Program to find Peak and Minimum sEMG amplitude for L and R EMG data 
%______________________________________________________________________ 
clear all; 
trial=input ('Input minute number '); 
%--------------------------------------------------------- 
%load in files 
%--------------------------------------------------------- 
L=input ('Select File for foot contact data ', 's'); 
l=xlsread (L); 
LLC=l(:,1); 
RLC=l(:,2); 
R=input('Select file for EMG data ', 's'); 
RMS=xlsread (R, 'a10:m10009'); 
LRMS=RMS(:,12); 
RRMS=RMS(:,13); 
R=length(RLC); 
for i=1:R-1 
    a=i; 
    b=i+1; 
    EMGl=LRMS(LLC(a):(LLC(b)-1)); 
    EMGr=RRMS(RLC(a):(RLC(b)-1)); 
     
    peak_EMGl(i)=max(EMGl);%identify L peak EMG for current gait cycle  
    peak_EMGr(i)=max(EMGr);%identify R peak EMG for current gait cycle 
    min_EMGl(i)=min(EMGl);%identify L minimum EMG for current gait 
cycle 
    min_EMGr(i)=min(EMGr);%identify R minimum EMG for current gait 
cycle 
end 
LpeakEMG=mean(peak_EMGl);%Find average L peak EMG 
SDLpeakEMG=std(peak_EMGl);%Find SD of L peak EMG 
RpeakEMG=mean(peak_EMGr); 
SDRpeakEMG=std(peak_EMGr); 
LminEMG=mean(min_EMGl); 
SDLminEMG=std(min_EMGl); 
RminEMG=mean(min_EMGr); 
SDRminEMG=std(min_EMGl); 
maxminEMG=[LpeakEMG SDLpeakEMG RpeakEMG SDRpeakEMG LminEMG SDLminEMG 
RminEMG SDRminEMG]; 
EMGdata=['EMGdata',num2str(trial)]; 
xlswrite (EMGdata, maxminEMG); 
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%______________________________________________________________________ 
%Program to find time of Peak and Onset for L and R EMG data 
%______________________________________________________________________ 
  
clear all; 
clf; 
trial=input ('Input minute number '); 
%--------------------------------------------------------- 
%load in files 
%--------------------------------------------------------- 
  
L=input ('Select File for foot contact data ', 's'); 
l=xlsread (L); 
LLC=l(:,1); 
RLC=l(:,2); 
R=input('Select file for EMG data ', 's'); 
RMS=xlsread (R, 'a10:m10009'); 
LRMS=RMS(:,12); 
RRMS=RMS(:,13); 
R=length(RLC); 
P=input('Select file for average peak EMG data ', 's'); 
Peak=xlsread (P); 
LPeak=Peak(1,1); 
RPeak=Peak(1,2); 
LMin=Peak(1,3); 
RMin=Peak(1,4); 
  
%--------------------------------------------------------------------- 
%identify threshold based on 50% of average peak over 30 min run 
%--------------------------------------------------------------------- 
  
l_on=.50*LPeak; 
r_on=.50*RPeak; 
  
%---------------------------------------------------------------------- 
%Cubic spline data to find ave EMG for each gait cycle 
%---------------------------------------------------------------------- 
  
for i=1:R-1 
    a=i; 
    b=i+1; 
    gt=RLC(a):(RLC(b)-1); 
    gtl=LLC(a):(LLC(b)-1); 
    gtlen(i)=length(gt);  
    Lgtlen=length(gtl); 
    EMGl=LRMS(LLC(a):(LLC(b)-1)); 
    EMGr=RRMS(RLC(a):(RLC(b)-1)); 
     
     
    for k=2:1:Lgtlen 
        Le1(1)=0; 
        Le1(k)=Le1(k-1)+(1000/(Lgtlen-1)); 
    end 
    for j=2:1:gtlen(i) 
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        Re1(1)=0; 
        Re1(j)=Re1(j-1)+(1000/(gtlen(i)-1)); 
    end 
    Le1=Le1'; 
    Re1=Re1'; 
    ee=spline(Le1,EMGl);%cubic spline 
    ff=spline(Re1,EMGr); 
    t=ppval(ee,Le1); 
    tt=ppval(ff,Re1); 
    figure(1); 
    subplot(1,2,1); 
    plot(Le1,EMGl); 
    hold on; 
    plot(Le1,t,'c-'); 
    title('Left RMS EMG'); 
    subplot(1,2,2); 
    plot(Re1,EMGr, 'b'); 
    title('Right RMS EMG'); 
    hold on; 
    plot(Re1,tt,'g-'); 
    norm=(0:1:1000); 
    s=(ppval(ee,norm)); 
    qq(:,i)=s'; 
    tt=(ppval(ff,norm)); 
    rr(:,i)=tt'; 
    [tL,I]=max(qq);%identify % gait cycle where peak occurs 
    if I(i)>500 
        III(i)=-(I(i)-1001); 
    elseif I(i)<=500 
        III(i)=-I(i); 
    end 
    [tR,II]=max(rr); 
    if II(i)>500 
        IIII(i)=-(II(i)-1001); 
    elseif II(i)<=500 
        IIII(i)=-II(i); 
    end 
    %--------------------------------------------- 
    %Find onset for gait cycle based on 50% peak 
    %--------------------------------------------- 
    lcount=1; 
       for ii=501:1001 
            if qq(ii,i)>l_on && qq(ii-1,i)<=l_on 
                Lflag(i,lcount)=-(ii-1001); 
                lcount=lcount+1; 
            end 
            if qq(ii,i)<=l_on && qq(ii-1,i)>l_on 
                Lflag(i,lcount)=-(ii-1001); 
                lcount=lcount+1; 
            end 
        end 
        for ii=1 
            if qq(ii,i)>l_on && qq(1001,i)<=l_on 
                Lflag(i,lcount)=-ii; 
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                lcount=lcount+1; 
            end 
            if qq(ii,i)<=l_on && qq(1001,i)>l_on 
                Lflag(i,lcount)=-ii; 
                lcount=lcount+1; 
            end 
        end 
        for ii=2:500 
            if qq(ii,i)>l_on && qq(ii-1,i)<=l_on 
                Lflag(i,lcount)=-ii; 
                lcount=lcount+1; 
            end 
            if qq(ii,i)<=l_on && qq(ii-1,i)>l_on 
                Lflag(i,lcount)=-ii; 
                lcount=lcount+1; 
            end 
        end 
    
    rcount=1; 
        for jj=501:1001 
            if rr(jj,i)>r_on && rr(jj-1,i)<=r_on 
                Rflag(i,rcount)=-(jj-1001); 
                rcount=rcount+1; 
            end 
            if rr(jj,i)<=r_on && rr(jj-1,i)>r_on 
                Rflag(i,rcount)=-(jj-1001); 
                rcount=rcount+1; 
            end 
        end 
        for jj=1 
            if rr(jj,i)>r_on && rr(1001,i)<=r_on 
                Rflag(i,rcount)=-jj; 
                rcount=rcount+1; 
            end 
            if rr(jj,i)<=r_on && rr(1001,i)>r_on 
                Rflag(i,rcount)=-jj; 
                rcount=rcount+1; 
            end 
        end 
        for jj=2:500 
            if rr(jj,i)>r_on && rr(jj-1,i)<=r_on 
                Rflag(i,rcount)=-jj; 
                rcount=rcount+1; 
            end 
            if rr(jj,i)<=r_on && rr(jj-1,i)>r_on 
                Rflag(i,rcount)=-jj; 
                rcount=rcount+1; 
            end 
        end 
   
    clear Le1; 
    clear Re1; 
    clear lcount; 
    clear rcount; 
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end 
  
for z=1:R-1 
    for col=2:50 
    if Lflag(z,col)~=0 && Lflag(z,col+1)==0  
        even=col/2; 
        if iswhole(even)==1 
            Lflagoff(z)=Lflag(z,col); 
            break; 
        elseif iswhole(even)~=1 
            Lflagoff(z)=Lflag(z,col-1); 
            break; 
        end 
    end 
    end 
end 
  
  
for zz=1:R-1 
    for colR=2:50 
    if Rflag(zz,colR)~=0 && Rflag(zz,colR+1)==0  
        evenR=colR/2; 
        if iswhole(evenR)==1 
            Rflagoff(zz)=Rflag(zz,colR); 
            break; 
        elseif iswhole(evenR)~=1 
            Rflagoff(zz)=Rflag(zz,colR-1); 
            break; 
        end 
    end 
    end 
end 
  
%------------------------------------------------------------------ 
%Save data 
%------------------------------------------------------------------ 
  
tpeakEMGL=mean(III); 
medtpeakEMGL=median(III); 
SDLtpeakEMG=std(III); 
tpeakEMGR=mean(IIII); 
medtpeakEMGR=median(IIII); 
SDRtpeakEMG=std(IIII); 
 
Lonset=mean(Lflag(1:(R-1),1)); 
medLonset=median(Lflag(1:(R-1),1)); 
SDLonset=std(Lflag(1:(R-1),1)); 
Ronset=mean(Rflag(1:(R-1),1)); 
medRonset=median(Rflag(1:(R-1),1)); 
SDRonset=std(Rflag(1:(R-1),1)); 
 
Loff=mean(Lflagoff); 
medLoff=median(Lflagoff); 
SDLoff=std(Lflagoff); 
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Roff=mean(Rflagoff); 
medRoff=median(Rflagoff); 
SDRoff=std(Rflagoff); 
  
%------------------------------------------------------- 
%Plot sEMG for each gait cycle 
%------------------------------------------------------- 
qq_a=qq'; 
rr_a=rr'; 
EMGlave=mean(qq_a); 
EMGrave=mean(rr_a); 
subplot(1,2,1); 
plot(norm,EMGlave, 'k'); 
hold on; 
subplot (1,2,2); 
plot(norm, EMGrave, 'k'); 
hold on; 
subplot(1,2,1); 
plot(norm, l_on, 'r--'); 
hold off; 
subplot(1,2,2); 
plot(norm, r_on, 'r--'); 
hold off; 
  
peakinfo=[tpeakEMGL medtpeakEMGL SDLtpeakEMG tpeakEMGR medtpeakEMGR 
SDRtpeakEMG Lonset medLonset SDLonset Ronset medRonset SDRonset Loff 
medLoff SDLoff Roff medRoff SDRoff]; 
Peak=['Peak',num2str(trial)]; 
xlswrite (Peak, peakinfo); 
  
hold off; 



www.manaraa.com

99 
clear all; 
clf; 
%______________________________________________________________________ 
%Program to compute median frequency for L and R EMG data 
%______________________________________________________________________ 
trial=input ('Input minute number '); 
%----------------------------------------------------------------------
-- 
%load in data files 
%----------------------------------------------------------------------
-- 
F=input('Select file for Raw EMG ', 's'); 
fat=xlsread (F, 'a10:k10009'); 
Lraw=fat(:,10); 
Rraw=fat(:,11); 
  
file_len=length(Lraw); 
sampling_rate = 1000;                         % set to 1000Hz 
interval = 1 / sampling_rate; 
  
% REMOVE OFFSET FROM DATA 
Lraw = Lraw - mean(Lraw); 
Rraw = Rraw - mean(Rraw); 
% END REMOVE OFFSET 
  
% CREATE TIME ARRAY FOR PLOTTING 
cnt=1; 
while cnt <= file_len 
  xtime(cnt) = (cnt-1)*interval; 
  cnt = cnt + 1; 
end 
  
%  PLOT RAW DATA 
subplot(4,1,1) 
plot(xtime,Lraw,'b') 
str = sprintf('Raw Data (L)'); 
    title(str) 
    xlabel('time') 
    ylabel('volts') 
    axis([0 10 -1 1]); 
  
  
%---------------------------------------------------------------------- 
%FFT  
%---------------------------------------------------------------------- 
Y=fft(Lraw); 
YY=Y.*conj(Y)/length(Y); 
yy=YY(1:5000); 
f=1000*(0:length(Y)/2)/length(Y); 
subplot(4,1,2) 
plot(f(1:int16(length(Y)/2)),yy(1:int16(length(Y)/2)),'b') 
hold on; 
  
% COMPUTE MEDIAN FREQUENCY 
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cnt = length(Y)/2+1; 
sum = 0; 
for i=1:cnt 
    sum = sum + (f(i) * YY(i)); 
end 
half_sum = sum/2;  sum = 0; 
  
i=1; 
while sum <= half_sum 
    sum = sum + (f(i) * YY(i)); 
    median_freqL = f(i); 
    i = i + 1; 
end 
  
median_freqL; 
x = [median_freqL median_freqL]; plot(x,ylim,'r');       % ylim = axis 
limits 
    str = sprintf('FFT (L) median freq = %.2f',median_freqL); 
        title(str) 
        xlabel('freq') 
        ylabel('amplitude') 
hold off; 
  
%  PLOT RAW DATA 
subplot(4,1,3) 
plot(xtime,Rraw,'b') 
str = sprintf('Raw Data (R)'); 
    title(str) 
    xlabel('time') 
    ylabel('volts') 
    axis([0 10 -1 1]); 
     
     
     
Z=fft(Rraw); 
ZZ=Z.*conj(Z)/length(Z); 
zz=ZZ(1:5000); 
fz=1000*(0:length(Z)/2)/length(Z); 
subplot(4,1,4) 
plot(fz(1:int16(length(Z)/2)),zz(1:int16(length(Z)/2)),'b') 
hold on; 
  
% COMPUTE MEDIAN FREQUENCY 
cntz = length(Z)/2+1; 
sum = 0; 
for i=1:cntz 
    sum = sum + (fz(i) * ZZ(i)); 
end 
half_sum = sum/2;  sum = 0; 
  
i=1; 
while sum <= half_sum 
    sum = sum + (fz(i) * ZZ(i)); 
    median_freqR = fz(i); 
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    i = i + 1; 
end 
  
median_freqR; 
x = [median_freqR median_freqR]; plot(x,ylim,'r');       % ylim = axis 
limits 
    str = sprintf('FFT (R) median freq = %.2f',median_freqR); 
        title(str) 
        xlabel('freq') 
        ylabel('amplitude') 
hold off; 
  
  
mf=[median_freqL median_freqR]; 
Freq=['Freq',num2str(trial)]; 
xlswrite (Freq, mf); 
 



www.manaraa.com

102 

APPENDIX 4 
 

Summary of subjects’ demographics and injury history
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Subject Age Height(cm) Weight(kg) # km Run/Week km/hr History of Running-Related Injuries in Past 6 Months
1 23 170.18 68.04 40.25 10.78 N/A 
2 24 170.18 55.34 56.35 10.46 N/A 
3 24 152.4 52.16 80.5 10.78 N/A 
4 19 165.1 63.5 32.2 10.3 L ankle sprain 
5 24 175.26 63.05 16.1 10.14 R hip pain 
6 35 175.26 81.19 40.25 10.46 R patellar tendonitis, L iliotibial band and hamstring pain 
7 29 182.88 89.81 24.15 11.59 N/A 
8 29 172.72 74.84 8.05 9.66 N/A 
9 28 187.96 77.11 48.3 12.87 N/A 

10 24 177.8 75.75 30.912 12.07 R iliotibial band pain 
11 24 193.04 83.91 22.54 12.07 Achilles tendonitis 
12 25 172.72 61.23 48.3 9.66 N/A 
13 23 172.72 68.04 14.49 10.46 N/A 
14 34 167.64 65.77 24.15 8.85 R ankle sprain, Bilateral piriformis/hamstring pain 
15 23 165.1 70.31 32.2 11.59 N/A 
16 23 167.64 68.04 48.3 9.66 N/A 
17 25 165.1 58.97 24.15 9.98 N/A 
18 22 157.48 54.43 16.1 9.98 N/A 
19 24 186.69 102.06 24.15 10.14 N/A 
20 24 187.96 79.38 24.15 12.07 N/A 
21 23 175.26 70.31 72.45 12.07 R knee pain 

Mean 25.19 173.39 70.63 33.26 10.74  
SD 3.83 10.24 12.29 18.70 1.06  
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APPENDIX 5 
 

Frontal plane pelvic drop data 

 
This appendix contains pelvic drop angles (degrees) at each 2-minute increment 

during the 30-minute run and average values for the left and right sides.  Following each 

is its corresponding standard deviation table.
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        LEFT          
Subject 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 AVE

1 13.70 14.62 13.85 13.79 13.66 14.50 13.69 13.21 13.57 13.62 13.88 14.43 13.95 13.01 12.99 12.75 13.70
2 8.70 9.13 8.78 9.17 9.86 9.87 10.11 9.20 9.89 11.18 11.94 10.74 11.12 11.29 11.56 13.77 10.39
3 6.89 6.59 6.57 6.31 7.48 7.21 8.21 7.77 6.46 6.71 7.53 7.44 5.71 6.58 5.51 6.52 6.84
4 12.57 15.19 12.14 13.54 15.03 16.17 13.83 15.86 13.00 15.75 16.68 14.02 16.52 14.53 15.54 14.17 14.66
5 14.09 13.10 13.47 14.35 12.80 13.24 13.46 13.57 13.55 16.76 16.83 15.43 17.82 16.38 16.91 17.92 14.98
6 3.94 4.82 4.97 4.74 5.66 6.18 6.38 6.35 5.51 6.58 5.98 5.84 6.43 5.94 5.55 7.50 5.77
7 6.71 8.26 8.29 8.65 9.14 8.83 8.29 8.38 7.95 8.89 8.36 8.31 7.09 6.55 7.25 6.10 7.94
8 8.23 7.02 7.03 8.26 7.92 9.96 10.57 9.26 9.30 10.77 10.96 10.20 9.79 10.62 11.56 10.60 9.50
9 9.79 9.67 9.39 9.67 11.23 9.39 9.29 9.62 9.51 9.33 9.26 9.83 9.16 10.54 8.98 8.61 9.58
10 4.96 5.69 4.22 4.80 4.86 4.90 5.11 4.34 5.49 4.97 4.60 4.78 4.76 4.28 3.99 4.66 4.78
11 11.15 13.81 10.04 10.53 10.20 9.90 11.43 14.41 15.43 14.54 13.13 17.51 18.63 16.82 17.12 18.96 13.97
12 11.16 11.64 11.40 11.19 11.58 11.60 11.47 12.65 11.37 11.39 11.20 11.73 12.10 12.14 11.89 12.41 11.68
13 12.67 13.13 12.92 12.63 13.09 12.25 12.26 12.01 13.60 13.51 14.24 13.32 12.87 11.86 12.04 11.02 12.71
14 8.41 9.37 9.96 9.74 9.47 9.32 11.00 10.93 11.01 9.84 11.52 12.26 10.86 11.94 9.97 13.65 10.58
15 13.42 13.69 14.33 14.49 11.88 14.69 14.46 17.81 16.54 16.11 17.90 17.43 15.36 14.85 17.95 17.83 15.55
16 7.14 5.61 6.01 5.31 3.78 5.13 6.92 6.13 5.07 5.16 5.17 4.07 4.71 4.93 4.22 4.44 5.24
17 10.83 11.90 13.16 13.98 14.28 16.38 16.55 15.42 16.82 15.78 17.06 16.42 15.91 17.87 16.68 16.34 15.34
18 3.37 4.24 3.77 5.85 6.94 5.56 7.44 9.07 9.95 11.97 13.59 15.78 14.85 16.80 15.43 13.51 9.88
19 11.12 13.71 13.66 11.40 14.70 14.93 17.41 16.76 16.64 15.37 15.75 15.70 13.69 17.06 14.62 16.08 14.91
20 13.27 13.26 12.74 12.61 11.78 12.30 12.27 12.13 12.99 12.87 12.65 13.07 12.66 12.97 13.94 13.19 12.79
21 7.93 7.08 8.87 8.85 8.99 9.04 8.83 9.40 9.96 9.70 9.35 8.50 8.80 9.42 8.99 9.27 8.94

Average data for left side pelvic drop (degrees) for each 10-second data collection.  Each subject’s average pelvic drop across 
each 2-minute increment is also presented. 
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        LEFT SD         
Subject 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 AVE

1 1.24 1.553 0.7 1.68 1.126 1.12 1.23 0.805 1.63 1.621 1.344 1.4 1.18 1.46 1.096 1.18 1.27
2 0.75 0.597 1.03 0.69 1.057 0.57 1.04 0.705 0.9 1.116 1.022 0.89 0.92 1.14 0.94 1.009 0.9
3 1.47 0.977 0.85 1.24 1.588 1.2 1.1 1.002 2.08 1.308 1.796 1.08 1.1 1.04 1.245 1.639 1.29
4 2.97 3.108 3.19 1.86 3.217 1.98 2.37 1.333 1.97 1.631 1.781 2.25 2.91 2.54 2.817 2.408 2.4
5 2.23 2.097 2.97 2.05 2.186 2.42 3.04 2.105 2.31 2.502 2.935 3.86 2.24 2.75 2.984 2.927 2.6
6 1.17 1.104 0.73 1.34 0.69 0.91 1.44 0.77 1.54 1.187 0.97 1.18 1.56 1.01 1.329 1.523 1.15
7 1.09 1.015 1.36 0.77 1.832 1.2 0.75 1.362 0.84 0.882 1.473 1.13 0.71 0.98 1.774 1.261 1.15
8 1.54 1.117 0.96 1.55 1.411 1.29 1.51 1.071 0.89 0.964 1.738 1.1 0.8 1.54 1.651 0.829 1.25
9 0.93 1.228 1.05 1.23 1.617 1.06 0.79 1.209 1.49 1.116 1.646 1.06 1.03 1.21 0.718 0.716 1.13
10 0.58 0.483 0.74 0.84 1.197 1.17 0.87 0.681 1.88 1.483 0.923 0.72 0.79 0.57 1.18 0.809 0.93
11 2.69 3.207 2.61 3.09 3.475 3.94 2.7 2.797 2.52 2.532 3.337 3.16 3.27 3.04 3.004 2.522 2.99
12 0.88 1.36 0.95 0.93 1.027 1.39 0.99 1.489 1.38 1.256 0.916 1.14 1.2 1.46 1.279 1.623 1.21
13 2.01 2.034 1.02 1.52 2.098 1.53 1.27 1.432 1.21 1.302 1.41 1.67 1.55 1.22 1.466 1.343 1.5
14 1.57 1.528 0.72 2.01 1.094 1.6 1.51 1.483 1.93 1.23 1.697 0.76 1.48 1.68 1.624 1.962 1.49
15 1.3 2.041 1.05 2.23 2.928 2.03 4.32 3.473 3.93 2.54 3.702 2.34 3.53 3.92 3.447 2.789 2.85
16 1.34 1.908 1.59 1.65 1.984 1.62 0.81 1.491 1.76 1.383 1.926 1.26 1.39 1.8 2.412 1.893 1.64
17 1.6 1.039 2.29 1.34 1.663 2.06 2.1 3.061 1.69 2.145 1.123 2.07 1.85 2.37 3.817 1.938 2.01
18 1.49 1.79 2.65 1.97 1.851 1.88 1.3 2.745 1.83 1.834 1.472 2.06 1.61 1.85 1.557 1.737 1.85
19 1.64 1.872 3 2.88 1.863 2.4 1.49 2.638 1.6 2.546 3.087 2.27 2.41 1.76 2.547 2.741 2.3
20 2.1 2.396 2.26 2.47 1.644 1.28 1.53 1.177 1.4 1.531 0.981 1.5 1.19 1.06 1.811 1.598 1.62
21 0.77 1.347 1.72 1.49 1.37 1.62 1.17 1.478 1.13 1.628 2.218 1.83 2.29 1.26 1.229 1.881 1.53

Standard deviations (SD) in degrees for the left side pelvic drop for each 10-second data collection period.  Each subject’s 
average standard deviation is presented in the last column. 
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        RIGHT         
Subject 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 AVE

1 7.70 6.76 7.47 7.18 7.67 7.74 6.47 8.05 7.30 7.89 7.94 8.47 8.13 7.60 8.22 8.69 7.70
2 7.34 7.01 7.70 6.82 6.84 6.51 7.96 7.85 6.41 6.37 6.27 6.61 5.95 5.86 5.46 4.46 6.59
3 7.15 6.36 7.46 6.46 6.39 6.61 6.73 6.43 6.70 6.71 6.24 6.71 7.54 6.82 7.42 6.83 6.78
4 7.74 6.50 10.42 7.65 6.78 8.22 7.99 7.85 9.06 7.16 7.04 6.41 7.00 7.12 6.69 7.32 7.56
5 10.94 11.93 12.95 12.46 13.21 13.64 14.29 12.83 14.08 12.56 13.08 12.34 12.03 13.63 12.64 13.92 12.91
6 10.25 9.28 10.10 10.17 8.73 8.27 9.40 8.85 10.26 9.23 8.57 9.48 9.22 9.58 9.02 8.42 9.30
7 5.57 4.86 4.84 4.37 4.43 3.73 4.49 3.53 3.92 3.49 4.55 4.31 4.07 4.82 4.16 6.49 4.48
8 2.59 2.77 2.97 2.57 3.04 3.98 4.33 4.74 2.71 2.69 2.69 2.22 2.24 1.87 2.59 3.92 2.99
9 8.28 8.57 8.82 9.30 8.91 8.14 9.26 9.04 9.50 8.99 9.02 8.73 9.15 9.00 9.21 8.83 8.92
10 8.83 8.35 9.29 9.35 9.94 9.57 9.51 9.95 9.44 10.05 9.46 9.59 9.60 9.98 9.74 9.77 9.53
11 13.56 13.70 15.68 15.49 16.48 17.10 16.33 15.81 14.05 13.14 15.85 16.21 15.53 12.80 14.13 15.45 15.08
12 7.06 7.26 6.46 6.26 6.31 5.67 5.01 5.51 4.95 4.98 5.23 6.03 5.02 4.94 5.27 5.72 5.73
13 2.46 3.53 3.41 2.39 3.35 2.48 2.92 2.79 2.60 2.56 2.56 3.18 3.06 3.60 3.86 4.48 3.08
14 4.13 4.80 5.09 4.45 5.09 5.32 5.55 5.23 5.36 4.74 4.73 5.38 4.79 4.58 5.26 4.66 4.95
15 5.54 7.32 7.82 7.70 8.19 7.17 8.05 8.21 7.70 8.17 7.17 7.43 7.16 8.44 8.26 7.99 7.64
16 9.18 9.87 9.30 10.42 12.43 9.23 9.84 10.41 11.22 10.54 11.03 12.60 12.12 12.13 11.81 14.67 11.05
17 7.11 6.69 6.59 4.33 3.11 2.61 3.98 6.04 7.06 7.23 8.54 9.45 7.32 10.52 11.91 13.24 7.23
18 6.34 6.17 8.75 7.81 6.90 6.92 5.51 4.15 2.63 3.43 3.49 4.13 2.77 5.21 6.50 4.33 5.31
19 9.71 11.06 8.79 8.08 7.50 6.76 7.07 6.89 6.62 7.44 6.49 7.86 7.05 7.26 6.87 5.63 7.57
20 4.31 3.83 4.31 5.40 4.34 4.48 5.12 4.90 4.92 5.28 4.71 5.68 6.70 5.83 5.40 5.72 5.06
21 11.24 10.69 8.72 9.25 9.07 8.96 9.08 9.05 8.67 8.82 10.14 10.59 10.29 10.28 9.08 8.96 9.56

Average data for right side pelvic drop (degrees) for each 10-second data collection.  Each subject’s average pelvic drop 
across each 2-minute increment is also presented. 
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t 0 2 4 6 8 10 6 18 20 2 24 6 28 3 E

 
  

c
      RIGHT SD 

12 14
 

1
   

2
  

2
  

Subje  0 AV
1 0.95 0.91 0.87 1 0.72 0.74 0.81 0.684 1.2 1.519 1.51 0.844 1.117 0.785 0.88 0.995 0.97
2 0.68 0.37 0.8 0.65 0.58 1.04 0.71 0.715 0.65 0.831 1.08 0.861 0.903 0.904 0.86 0.578 0.76
3 0.66 0.84 0.99 0.62 1.15 1.08 0.88 0.895 0.69 0.587 0.86 0.924 0.984 0.842 1.07 0.647 0.86
4 1.51 1.82 0.98 0.97 1.66 0.95 1.37 1.763 1.47 1.099 1.55 0.879 1.214 1.011 0.93 1.429 1.29
5 1.43 1.07 1.41 1.31 2.23 3.25 1.7 1.818 2.73 2.213 2.21 2.378 1.922 1.872 2.45 2.061 2
6 0.76 0.71 0.6 0.61 0.66 0.68 0.69 0.629 0.81 0.82 0.59 0.948 0.828 0.774 0.55 0.875 0.72
7 0.53 0.65 1 1.16 1.32 0.69 0.74 1.191 0.73 0.767 1 1.385 0.853 1.177 0.62 0.582 0.9
8 0.95 0.73 0.89 0.86 0.95 0.97 1.22 1.078 0.61 0.78 0.79 0.521 0.812 1.119 0.97 1.015 0.89
9 0.57 0.92 0.52 0.9 0.85 0.85 0.76 0.753 0.48 0.549 0.68 0.727 0.474 0.55 0.6 0.57 0.67
10 0.65 0.72 0.69 0.52 0.44 0.98 0.76 0.711 0.4 1.06 0.5 0.531 0.872 0.506 0.72 1.123 0.7
11 1.99 1.41 1.75 1.67 1.78 3.84 1.37 2.574 1.36 1.934 1.39 4.217 2.176 3.081 2.69 2.312 2.22
12 1.01 0.85 0.97 0.77 0.62 0.67 0.66 0.785 0.75 0.442 0.9 0.949 0.894 0.76 0.66 0.808 0.78
13 0.82 1.33 1.58 1.19 1.25 0.94 0.82 1.211 1.84 1.299 1.17 0.902 1.297 0.891 1.31 1.294 1.2
14 0.59 0.86 0.49 0.81 0.76 1.25 0.99 0.943 1 0.82 0.95 1.186 0.83 0.888 0.64 1.017 0.88
15 0.72 0.72 1.17 0.95 1.5 1.08 1.38 1.335 0.96 1.916 1.36 0.819 1.466 1.579 1.62 1.453 1.25
16 1.01 1.35 1.08 1.28 0.99 1.35 1.01 1.227 1.06 2.078 2 2.855 2.448 2.944 2.94 2.054 1.73
17 0.85 1.36 1.41 1.03 1.5 0.92 1.56 1.185 0.87 1.596 1.43 1.77 1.194 1.4 1.43 2.479 1.37
18 1.41 1.9 1.8 1.07 1.34 1.35 1.11 1.157 1.13 1.438 1.65 1.345 1.056 1.677 1.29 1.29 1.38
19 1.71 2.01 1.96 1.76 1.69 2.25 1.72 1.646 2.02 1.308 2.2 1.403 1.684 1.836 1.48 1.839 1.78
20 1.15 1.62 1.58 1 0.75 1.31 0.99 1.135 1.46 1.131 0.99 0.833 1.091 0.813 1.04 1.158 1.13
21 0.91 0.5 1.44 1.52 1.36 0.96 1.77 1.223 2.13 1.613 1.58 0.866 1.243 1.2 1.26 1.199 1.3

Standard deviations (SD) in degrees for the right side pelvic drop for each 10-second data collection period.  Each 
subject’s average standard deviation is presented in the last column.
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APPENDIX 6 
 

Gluteus medius muscle isometric force data 

 
 This appendix presents a table summarizing GM isometric force (F) for the 3 

trials, as well as resulting averages (Ave), standard deviations (SD), and isometric torque 

(T) data for the left (L) and right (R) sides of all subjects. 
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Subject L F 1 L F 2 L F 3 L Ave F L SD F L Ave T R F 1 R F 2 R F 3 R Ave F R SD F R Ave T

1 17.00 18.00 17.60 17.53 0.50 131.15 17.90 17.40 15.80 17.03 1.10 128.85
2 9.80 9.50 12.20 10.50 1.48 85.66 11.40 7.90 7.30 8.87 2.21 78.60
3 19.70 18.00 22.70 20.13 2.38 100.61 20.10 21.40 21.50 21.00 0.78 103.79
4 19.20 14.00 16.50 16.57 2.60 99.96 7.20 12.40 9.00 9.53 2.64 73.50
5 9.80 10.20 10.20 10.07 0.23 95.33 13.80 12.60 10.00 12.13 1.94 104.74
6 22.10 30.50 29.20 27.27 4.52 162.33 31.10 29.40 26.30 28.93 2.43 172.88
7 20.80 20.60 25.10 22.17 2.54 150.38 30.00 29.10 30.00 29.70 0.52 186.22
8 21.70 21.90 21.40 21.67 0.25 145.63 22.40 26.80 26.60 25.27 2.48 161.17
9 21.50 21.30 21.30 21.37 0.12 142.60 13.00 23.70 27.90 21.53 7.68 139.69

10 26.10 28.30 27.50 27.30 1.11 162.68 27.30 29.70 31.50 29.50 2.11 171.74
11 18.30 20.90 20.90 20.03 1.50 154.46 24.40 19.40 18.90 20.90 3.04 153.99
12 16.20 18.40 19.20 17.93 1.55 118.42 14.80 16.50 18.20 16.50 1.70 109.86
13 14.50 15.00 15.90 15.13 0.71 109.87 15.60 17.90 17.80 17.10 1.30 115.55
14 18.80 17.80 19.80 18.80 1.00 112.41 20.60 22.10 18.30 20.33 1.91 121.17
15 11.40 11.60 12.30 11.77 0.47 83.89 13.30 16.20 16.60 15.37 1.80 99.57
16 11.50 11.10 11.60 11.40 0.26 94.27 16.00 14.10 13.90 14.67 1.16 105.67
17 14.80 12.70 11.70 13.07 1.58 84.20 11.50 12.80 14.00 12.77 1.25 83.08
18 18.10 16.90 15.30 16.77 1.40 102.79 16.00 17.40 15.80 16.40 0.87 101.18
19 26.90 30.30 29.90 29.03 1.86 191.58 32.60 35.80 33.00 33.80 1.74 211.83
20 26.60 25.10 24.40 25.37 1.12 157.26 26.40 27.00 27.10 26.83 0.38 163.03
21 22.00 21.90 22.10 22.00 0.10 153.58 21.70 19.40 19.70 20.27 1.25 145.74
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APPENDIX 7 
 

Time of gluteus medius peak amplitude data 

 
This appendix contains left and right side data on time of peak sEMG amplitude 

including accompanying standard deviation tables for each 2-minute increment over the 

30-minute run.  A value of zero GM peak amplitude timing would indicate that peak 

amplitude occurred at foot contact (0% gait cycle); whereas, positive values occurred 

prior to FS and negative values after FS. 
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        LEFT          
Subject 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 AVE

1 17 0 -2 14.5 131 13.5 0 13.5 13.5 12 10.5 10.5 9.5 12.5 9 18.5 17.72
2 -97 155.5 385 153 387.5 35 262.5 483 367.5 372 472 439 154 445 478 301.5 299.59
3 90 87 88 88 93 78 37 29.5 81.5 93 27 28 55 81 82 77 69.69
4 18.5 27 35 24 6.5 33.5 25 22.5 27 33.5 29 13.5 26 21 18.5 17 23.59
5 48.5 13.5 -4 -1 9 -38 4 -11 22 8 0 -36 -35 -30 -45.5 -9 -6.53
6 18 48 38 -1 -1 35 -3 -4 0 -1 -1 0 -1 -1 0 -9 7.31
7 49.5 53 47.5 35.5 45 37.5 30.5 19 -292 -0.5 -296 -136 31 34 24 17 -18.81
8 15 -100 -100 -100 16 -100 -100 -100 13.5 15.5 -100 12.5 18 19.5 21 19.5 -34.34
9 16 17 -1 0 6 2 14 1 6 4 4 0 2 -1 12 31     3 5.
10 11 10 21 23 28 20 26 32 27 21 20 28 37 34 -115 313.5 33.53
11 11 -1 0 -1 -2 5 5 0 0 -0.5 1 -1 1 6 1 1 1.59
12 62 66.5 62.5 62 41 44 46 60 48.5 9.5 38 70 30 53 37.5 44.5 48.44
13 477.5 58.5 65 34.5 40 35 32 27 28 49 48 31 5 28 28 24.5 63.19
14 32.5 463 468 463 466 463 467 465 465 460 463 464 419 463 466 462 434.34
15 9 14.5 26 35 40 31 28.5 34 28 37 29 38 33.5 32 25 34 29.66
16 61.5 73 59 81 61.5 72 70 65 77 74.5 70 59 55.5 58.5 67 64.5 66.81
17 64 67.5 82 90.5 71.5 86 87.5 88.5 89 87.5 73.5 64 83.5 92 69.5 73.5 79.38
18 92 92 106 109 87 117 111 77 83.5 120 104 89 82 107 86 83 96.59
19 17 14.5 27 25 14 10 17 13 19 12 22 18 8.5 12 19 10.5 16.16
20 22 22 17 19.5 22 18.5 16 241 255 161 36 14 13 0 -12 0 52.81
21 75 85 74 86 74 72 63 88 91 96 105 85 92 72 93 89 83.75

Median time of left side peak GM activity ( )%gaitc le∗ 1−10  for each 10-second data collection.  The average across all 
trials is shown in the last column. 

yc
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        LEFT SD         
Subject 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 AVE

1 15.30 11.91 12.57 19.37 19.05 17.00 13.56 21.95 10.77 22.37 14.14 9.49 15.26 11.85 18.55 12.28 15.34
2 179.32 145.14 116.30 136.45 182.25 167.45 194.82 421.51 185.22 163.49 144.36 167.74 221.15 161.79 116.04 217.76 182.55
3 22.04 28.99 36.58 24.67 28.29 38.00 41.18 38.66 31.67 37.55 40.43 36.12 38.71 30.83 35.85 30.56 33.76
4 90.79 12.21 14.43 14.95 19.24 17.57 12.26 7.83 20.70 13.64 19.98 16.71 20.55 13.98 14.90 14.33 20.26
5 81.98 91.74 118.37 39.50 56.29 63.25 60.55 75.76 46.59 76.54 127.45 51.79 143.87 114.44 37.46 55.34 77.56
6 15.39 173.84 191.83 21.66 54.26 145.49 25.48 23.35 6.78 8.07 4.56 116.72 4.51 6.10 115.41 9.27 57.67
7 22.26 13.21 27.88 24.88 19.00 152.64 152.99 149.84 157.99 140.42 185.74 163.59 182.88 23.69 23.08 49.52 93.10
8 256.28 36.84 24.45 170.48 41.95 43.11 41.51 49.03 33.77 30.21 21.33 35.97 30.07 14.23 45.68 21.15 56.00
9 16.05 12.77 10.20 5.16 11.30 20.70 12.25 9.55 11.60 12.14 8.94 12.82 15.07 17.10 16.39 8.12 12.51
10 16.14 16.25 9.83 12.48 9.29 17.26 145.27 8.00 24.09 14.27 20.95 31.11 146.16 189.43 295.06 185.55 71.32
11 173.02 13.28 23.00 9.49 8.88 24.49 9.25 18.92 6.74 117.21 5.72 7.06 7.16 10.39 10.12 22.34 29.19
12 16.48 19.00 19.70 42.15 29.31 19.09 23.10 19.06 99.60 34.66 28.93 32.83 22.34 30.80 10.87 6.13 28.38
13 144.74 13.89 24.21 19.55 23.60 168.83 31.42 32.66 141.53 118.23 30.03 20.97 303.58 123.54 286.28 115.10 99.88
14 171.08 161.21 132.43 5.27 229.32 140.54 136.68 192.54 162.62 166.28 206.67 5.59 233.42 4.98 17.20 134.62 131.28
15 10.63 24.87 17.87 14.36 13.56 16.46 9.27 17.89 12.51 18.35 15.24 20.83 33.81 19.98 26.01 24.76 18.52
16 22.63 27.97 14.44 17.84 16.67 15.32 19.98 14.93 18.39 27.24 19.23 18.03 18.88 17.61 19.49 15.30 19.00
17 198.21 189.89 10.56 77.11 14.11 12.07 5.30 12.77 7.51 4.34 9.09 65.61 111.95 94.29 151.59 31.22 62.23
18 20.71 37.72 29.91 28.36 27.04 21.68 29.72 109.98 32.58 19.96 27.00 26.10 19.32 31.56 35.13 29.03 32.86
19 14.92 15.38 15.90 20.87 22.32 12.98 24.59 22.66 24.65 20.14 21.78 20.74 20.00 14.56 16.94 13.80 18.89
20 16.06 11.46 15.38 12.92 10.94 15.77 10.13 156.52 167.40 70.01 60.72 11.28 17.31 28.98 25.75 10.83 40.09
21 33.22 77.29 69.40 86.09 63.31 67.85 94.92 78.31 30.23 87.04 173.57 68.73 93.72 73.74 176.90 114.32 86.79

Standard deviations (SD) of left side time of peak GM amplitude ( )1%gaitcycle −∗10  for each 10-second data collection 
period.  Average SD for each subject across all trials is shown in the last column. 
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        RIGHT          
Subject 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 AVE

1 23.5 0 -0.5 5 135 1 4 5 5 10 27.5 25 30.5 31.5 32 39 23.34
2 51 38 33.5 26.5 26 -24 19 50 25.5 33.5 41 39.5 -19 29 13 -7.5 23.44
3 8 57 15 82 60 39 33 54 18.5 21 26 26 19.5 22.5 17 38 33.53
4 -2 4 -1 -2.5 8.5 1 0.5 21 -0.5 27.5 10 4 33.5 14 0.5 -0.5 7.38
5 -5 -25 0 0 0 -2 -3 -8 -0.5 0 -1 -1 -1 -1 -2 -9 -3.66
6 -8 -6 -42 -41 -45 -53 -50 -41 -37 -38 -33 -28 -6 -1 -62 -10 -31.31
7 61.5 55 53 43.5 57 54.5 65 58.5 31 45 50 47 49 51 -43.5 -52 39.09
8 24 17 16 26 23 24 18 12 25 15 23.5 26.5 24 25 24.5 25 21.78
9 5 -1 -1 0 0 -1 -1 5 8 3 0 3 -1 0 0 0 1.19
10 14 14 -1 0 5 -1 -1 0 -1 17 -1 0 0 -3 -24.5 6 1.47
11 -119 -103 7 393 192.5 7 -4 -3.5 33 56.5 401 -17 1 5 -3 0 52.91
12 0 0 78.5 13 43 23.5 73 55 106.5 26 25.5 34 9 34 20 26 35.44
13 -175.5 -205 -35 -25.5 -32 -37 -8 -14 -14 -27 7 8 0 46 446 30.5 -2.22
14 -7 -21 35 34 38 30 4 18 0 16 17 26 0 -4 -1 -2 11.44
15 4 2 5.5 4.5 4.5 21.5 0 -2 0 0 6 0 0 3 1 0 3.13
16 56 50 48 48.5 51.5 54.5 53.5 51 65.5 59 49.5 52 53.5 39 58.5 42 52.00
17 -453 -187 -449.5 68 45 73.5 70 66.5 64 64.5 60 64 60 75.5 71 63.5 -15.25
18 -479 80 57 51 55 42 97 62 68.5 71 69 58 67 61 65 71 30.97
19 12 0.5 7 4 2 12 12 12 16.5 -1 18 8 8 7 6 0 7.75
20 4 13 4 16 6 15 0 2 15 13 14 11 371 6 361 15 54.13
21 5 23 22 24 20 27 16 18 33 35 81 62 43 86 33 35 35.19

Median time of right side peak GM activity ( )%gaitc le∗ 1−10  for each 10-second data collection.  The average across all 
trials is shown in the last column. 

yc
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        RIGHT SD         
Subject 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 AVE

1 47.50 17.73 20.23 14.19 24.59 26.69 12.43 12.17 23.72 90.11 78.97 105.18 9.30 110.70 78.63 86.95 47.44
2 120.78 83.28 152.07 39.12 42.79 31.51 36.33 38.84 34.12 36.53 31.97 35.95 47.74 43.66 44.06 56.98 54.73
3 19.26 25.43 27.50 141.53 29.14 31.60 25.73 31.41 30.98 26.95 23.87 27.90 32.29 27.04 22.18 18.38 33.82
4 17.92 13.21 21.94 20.84 24.97 27.02 21.28 23.38 23.45 19.44 31.34 31.36 23.64 32.95 30.79 18.14 23.86
5 26.74 30.59 32.97 23.75 53.67 21.55 27.48 34.21 27.08 27.58 34.39 30.12 24.31 19.13 23.77 32.79 29.38
6 35.34 16.70 19.68 24.28 29.92 21.26 10.28 19.74 17.50 14.50 12.16 18.59 19.33 14.48 3.57 21.06 18.65
7 16.01 18.19 16.28 18.41 25.20 23.15 26.09 9.41 32.79 24.22 23.66 33.60 21.74 34.77 90.68 228.22 40.15
8 247.58 29.60 32.18 35.94 34.94 26.21 31.78 19.11 26.98 18.51 26.78 42.77 24.52 35.70 30.60 24.16 42.96
9 10.17 10.72 10.88 3.85 6.98 23.29 7.93 5.96 7.39 9.04 5.41 6.28 9.16 5.57 10.05 15.86 9.28
10 11.63 8.69 19.93 39.18 26.35 19.05 21.45 19.44 23.45 16.40 22.39 21.95 26.15 28.67 35.65 31.83 23.26
11 243.56 275.77 246.42 239.63 246.92 232.49 240.13 191.29 236.75 227.73 210.09 140.40 63.95 31.67 51.86 41.12 182.49
12 9.37 8.45 36.96 128.82 33.69 21.40 136.03 40.80 81.16 72.02 29.87 20.31 27.78 21.95 25.14 15.94 44.36
13 100.84 89.65 31.88 11.38 24.67 45.14 16.53 175.34 17.40 30.61 122.99 123.36 26.58 212.60 231.25 226.83 92.94
14 220.33 9.86 127.07 25.44 53.45 50.35 209.66 216.70 234.75 231.95 230.74 236.40 18.43 182.13 4.58 9.07 128.81
15 21.76 29.80 27.76 34.20 15.72 21.68 16.09 13.77 19.44 18.43 14.08 12.87 5.89 14.14 6.22 21.73 18.35
16 18.00 24.97 18.23 17.14 24.84 21.34 14.28 24.75 31.06 13.39 15.55 21.19 22.06 19.72 17.99 20.69 20.33
17 282.37 444.73 300.93 149.74 134.45 19.35 12.71 33.08 10.28 74.79 16.85 24.61 23.42 18.08 18.36 19.19 98.93
18 351.41 158.54 209.73 211.27 245.26 315.05 254.07 201.75 206.10 25.03 28.05 19.60 27.92 39.66 30.27 26.48 146.89
19 13.35 12.22 9.35 30.46 7.27 9.40 16.54 15.71 12.55 10.50 9.02 12.98 12.23 27.22 10.00 9.99 13.67
20 9.45 17.19 13.05 10.46 12.25 13.52 14.28 11.66 16.28 107.03 233.33 205.25 177.31 147.72 23.91 153.18 72.87
21 15.70 76.37 149.46 98.17 19.04 76.02 15.86 71.14 75.66 35.50 65.37 32.99 89.63 66.87 32.78 116.83 64.84

Standard deviations (SD) of right side time of peak GM amplitude 

115 

( )1c −%gaitcy 10  for each 10-second data collection 
period.  Average SD for each subject across all trials is shown in the last column.

le∗
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APPENDIX 8 
 

Time of gluteus medius muscle onset data 

 
The following appendix contains tables for left and right GM sEMG time of onset 

for each 2-minute increment for the 30-minute run and the resulting average.  Standard 

devation data follow the corresponding table. 
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        LEFT          

Subject 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 AVE
1 48.00 49.00 47.50 51.50 166.50 59.00 69.00 427.00 52.00 54.50 63.00 103.50 62.50 114.00 97.50 107.50 98.25
2 475.50 472.00 466.00 467.50 470.50 417.00 491.50 475.00 492.00 479.50 485.00 412.50 470.00 493.00 428.50 411.50 462.94
3 138.00 127.00 122.00 128.00 135.00 129.00 130.00 127.00 133.50 138.50 127.50 126.00 129.50 132.00 128.00 139.50 130.66
4 98.00 98.00 101.50 76.50 72.00 83.00 80.00 83.50 83.50 78.50 99.50 65.00 72.50 71.00 77.50 68.50 81.78
5 390.00 264.50 234.00 193.00 174.00 173.00 222.00 209.00 204.00 245.00 90.00 212.00 118.00 74.00 173.00 89.00 191.53
6 277.00 385.00 388.50 151.00 399.00 402.50 411.00 419.00 418.00 434.00 440.00 446.00 443.00 449.00 447.00 449.00 397.44
7 103.00 94.00 94.50 88.00 85.00 81.00 92.50 93.50 92.00 81.00 88.00 99.00 104.00 91.00 90.00 88.00 91.53
8 162.00 127.00 103.00 111.50 120.00 98.00 115.50 118.00 207.00 172.50 132.50 158.50 103.00 121.00 189.50 117.00 134.75
9 77.00 53.00 52.00 58.00 55.00 51.00 58.00 54.00 57.00 56.00 52.00 55.00 54.00 59.00 55.00 53.00 56.19

10 53.00 54.00 57.00 52.00 59.00 57.00 462.00 493.00 493.00 485.00 90.00 340.00 314.00 411.00 336.00 338.00 255.88
11 354.00 425.00 333.00 79.00 62.00 71.00 79.00 78.00 69.00 407.50 89.00 70.00 79.00 68.00 75.00 79.00 151.09
12 107.00 201.00 226.50 204.00 407.00 408.00 395.50 137.00 404.00 412.50 402.00 327.50 147.00 169.00 188.00 165.50 268.84
13 470.00 135.00 121.00 106.00 462.00 459.00 463.00 483.00 469.00 458.00 469.00 457.00 438.00 440.00 415.00 413.50 391.16
14 487.50 495.00 497.00 486.00 482.00 493.00 481.00 495.00 484.00 491.00 494.00 490.00 486.00 485.00 494.00 485.00 489.09
15 78.00 82.50 95.50 96.50 107.50 94.50 104.50 114.00 124.00 102.00 101.00 108.00 113.00 107.50 104.00 103.00 102.22
16 152.50 130.00 134.50 151.50 121.50 137.00 136.00 129.50 119.50 130.00 130.50 142.00 441.50 291.50 290.00 131.00 173.03
17 78.50 219.00 164.50 138.00 102.00 116.50 118.00 115.50 162.00 262.00 260.50 475.00 420.00 364.50 361.50 347.00 231.53
18 178.00 187.00 181.00 182.00 185.00 185.00 190.00 192.00 191.00 202.00 180.00 177.00 473.00 179.00 184.00 166.00 202.00
19 69.00 67.00 76.00 77.00 73.00 70.00 73.00 76.00 76.50 77.00 80.00 86.50 277.50 76.00 482.50 488.00 139.06
20 67.00 76.00 74.00 62.50 55.00 79.50 68.00 302.00 288.00 195.00 75.00 62.00 62.00 133.00 70.00 56.00 107.81
21 373.00 305.00 307.00 310.00 309.00 294.00 311.00 298.00 335.00 491.00 470.00 478.00 474.00 468.00 457.00 462.00 383.88

Median time of left GM sEMG onset ( )1%gait 10  for each 10-second data collection, as well as average GM sEMG 
onset across all trials. 

cycl −e∗
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        LEFT SD         

Subject 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 AVE
1 10.16 9.11 11.50 18.23 15.99 127.15 158.09 185.30 117.47 127.18 91.72 95.81 98.48 103.55 125.33 133.19 89.27
2 53.67 32.77 79.55 6.64 19.45 30.27 9.55 61.92 14.31 9.26 37.93 50.36 42.23 32.24 54.35 41.38 35.99
3 61.88 16.04 10.73 15.34 19.85 58.49 66.01 11.22 28.25 20.60 20.02 9.38 14.21 16.77 19.08 18.89 25.42
4 100.16 29.11 25.49 17.39 11.29 10.01 18.80 15.26 17.69 9.08 101.44 88.86 20.50 10.99 20.76 15.26 32.01
5 94.53 81.17 95.79 100.04 58.23 118.45 102.25 122.31 70.74 152.09 118.86 121.69 131.30 100.48 120.82 134.36 107.69
6 87.24 5.20 5.20 130.39 114.52 7.67 6.95 87.83 149.73 4.84 6.40 1.80 47.47 3.74 3.35 2.59 41.56
7 12.25 9.81 18.77 12.79 10.36 14.52 8.22 13.33 19.55 12.90 12.00 164.24 140.90 12.90 11.72 26.24 31.28
8 193.02 47.11 30.51 55.50 36.24 29.10 34.75 26.46 34.45 44.08 25.22 51.32 19.13 25.77 38.97 34.95 45.41
9 114.80 117.39 16.34 16.18 8.78 8.46 21.29 15.18 10.86 15.33 7.16 8.78 13.13 10.41 8.17 9.52 25.11

10 7.50 14.36 11.43 14.26 9.80 10.85 196.53 131.19 224.76 131.44 219.66 92.95 81.89 87.47 71.26 5.19 81.91
11 103.49 103.89 172.49 37.52 15.14 20.91 10.42 15.03 16.13 167.41 182.88 139.76 21.17 10.24 14.65 11.46 65.16
12 77.54 109.41 115.98 124.89 96.91 100.79 125.19 143.42 127.37 48.44 105.47 120.93 81.47 84.44 52.99 49.10 97.77
13 26.00 152.77 23.24 183.29 186.51 22.69 162.48 187.36 168.78 172.98 14.20 94.68 14.98 18.38 21.93 12.65 91.43
14 158.51 22.80 6.16 22.91 24.04 18.75 38.14 42.25 45.90 7.65 14.41 5.65 13.44 6.55 6.28 8.02 27.59
15 16.97 25.12 17.76 177.20 111.98 12.98 167.47 182.20 173.65 104.38 13.08 18.09 15.36 16.64 13.05 18.15 67.75
16 16.79 22.47 12.12 15.38 18.61 22.54 11.97 8.92 13.99 18.51 16.39 171.21 161.12 175.42 180.58 135.33 62.58
17 145.75 131.21 107.13 109.96 10.72 8.73 2.61 8.17 115.70 176.06 165.73 120.82 81.44 53.22 74.48 45.36 84.82
18 42.83 27.24 18.07 17.86 41.21 80.67 85.43 127.67 13.83 128.23 84.58 79.92 156.91 113.47 146.20 19.33 73.96
19 103.12 14.56 10.69 7.57 7.59 13.89 11.93 11.44 13.72 12.25 21.68 158.92 211.88 216.75 183.06 161.26 72.52
20 19.46 76.36 21.51 29.44 26.60 24.59 32.68 118.83 90.22 68.61 61.47 14.26 13.84 55.02 28.54 36.86 44.89
21 77.80 92.67 75.75 85.21 74.90 80.94 77.48 101.50 80.17 73.99 42.37 74.18 47.32 75.38 19.12 37.91 69.79

Standard deviations (SD) of the time of left side GM activity onset ( )1c −%gaitcy 10  for each 10-second data collection 
window.  The average SD across all data collections for each subject is presented in the last column. 

le∗
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        RIGHT         
Subject 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 AVE

1 16 15.5 19.5 19.5 144 21 25 22.5 38 229 326 325 343 343 341.5 354 161.41
2 456.5 464 462.5 458.5 456 461 467 318 305.5 326 195.5 246.5 106 205 129 210.5 329.22
3 387 400 417 419 124 110 98.5 108 107.5 108 106.5 101.5 105 101.5 102 113 181.78
4 71 60 62 52.5 52 56 57.5 60.5 59 60.5 61 52.5 64.5 54.5 62 52.5 58.63
5 164 47.5 52.5 27 27 50 56 30 42.5 31 29 25 26 38 31.5 19 43.50
6 25 22 15.5 34 20 29.5 13 6 17 16 29 432 448 452 424 20 125.19
7 88 85 91.5 85.5 87 84.5 95.5 86.5 81 82 84 85.5 84 79 82.5 466 109.22
8 73 39 46 84 92 53.5 88.5 67 110 118.5 80 81 35 81.5 107 66.5 76.41
9 67 48 34 42 34 38 39 38 43 50 32 41 37 33 46 42 41.50

10 27 33 81 97 482 475 477 477 478 479 47 50 41 37.5 37.5 33.5 209.53
11 428 423 421 419 422.5 416 417 434.5 427 423.5 428 416 415 75 72 74 356.97
12 484 475 463.5 497 471 476 477 183 198.5 206.5 188.5 170 71 67 55.5 62.5 284.13
13 439 199.5 40 463 41 24 34 55 457 44 466 455 455 475 435 482 285.28
14 476 461 446 435 464 462 463 460 468 458 463 463 459 443 454 454 458.06
15 80.5 86 80.5 81 85.5 92 86 87.5 89 81 80 82 84.5 74.5 86 86.5 83.91
16 110 109.5 106 112.5 99 123 106 113 108 102 109 106 97.5 101 99.5 103.5 106.59
17 451.5 416 416.5 431.5 81.5 104.5 108 104 103 102.5 99.5 91 110 104 99 96.5 182.44
18 482 484 463 446 444 446 488 447 444 485 487 472 152 160 483 164 409.19
19 55 46 57 48 38 42 44 48 44 45.5 51 50 46 46 46 45.5 47.00
20 52 51 59 54.5 46 50.5 46 45 55 387 51 56 403 48 393 55 115.75
21 106 94 291 287 136 142 265 278 295 119 133 134 142 282 458 456 226.13

Median time of right side GM activity onset ( )1−%gaitc ∗10  for each 10-second data collection period.  The average time 
of onset across each data collection period is shown in the last column. 

ycle
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        RIGHT SD         
Subject 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 AVE

1 18.14 19.67 24.11 23.33 64.73 32.65 20.42 15.79 39.42 75.97 50.08 30.40 11.52 33.83 22.44 16.71 31.20
2 17.84 9.66 8.00 5.55 39.99 7.92 38.98 145.38 120.81 144.30 159.06 147.40 83.33 84.99 110.87 117.01 77.57
3 12.99 135.73 5.21 5.80 148.33 138.60 49.54 10.03 11.76 9.02 48.60 19.28 13.45 11.91 8.19 55.28 42.73
4 15.89 9.60 12.35 9.94 7.60 12.55 15.21 9.77 15.00 16.91 10.73 10.02 8.00 12.96 7.55 8.10 11.39
5 131.77 120.51 80.83 17.12 49.86 26.45 43.53 16.81 83.55 85.60 20.20 29.35 54.02 17.10 27.54 93.40 56.10
6 28.55 15.50 12.70 13.98 17.54 142.55 15.19 13.28 16.81 14.74 155.86 217.54 192.43 4.92 115.21 13.15 61.87
7 139.41 13.96 14.79 9.47 9.09 9.88 10.27 12.26 17.03 16.32 10.91 59.64 71.49 5.47 191.58 5.17 37.30
8 176.42 29.81 40.81 15.67 27.95 46.70 28.53 20.67 41.27 29.20 56.04 35.95 26.20 47.32 52.77 42.73 44.88
9 21.24 16.93 13.09 15.71 17.83 15.07 11.75 17.71 11.84 13.02 7.79 14.18 10.01 7.55 15.89 11.34 13.81

10 14.29 16.65 5.83 121.25 177.58 8.89 113.99 3.47 163.07 186.67 132.31 15.52 15.80 8.73 7.12 3.75 62.18
11 13.87 13.60 15.32 13.60 13.17 9.17 4.67 9.15 23.45 9.45 7.23 4.90 163.29 102.68 5.42 9.34 26.14
12 24.52 30.29 15.57 17.93 16.01 80.97 114.48 148.70 85.29 19.50 38.07 57.51 28.23 15.45 10.90 13.81 44.83
13 64.46 213.77 127.47 225.48 162.06 132.77 39.36 203.49 207.87 26.13 194.76 198.49 176.60 23.68 29.45 26.89 128.29
14 33.41 57.52 30.99 157.11 135.08 146.09 209.55 158.50 8.12 184.76 139.62 133.60 174.44 204.68 162.91 202.55 133.68
15 139.39 26.12 21.91 15.47 19.37 15.69 18.20 25.18 18.86 20.21 24.03 21.76 26.95 25.35 19.85 14.56 28.31
16 16.19 16.25 14.79 16.31 14.30 12.26 8.63 13.36 13.14 10.30 12.30 13.49 19.65 11.18 11.16 11.65 13.43
17 41.79 63.56 115.78 34.57 13.10 41.62 94.40 88.43 82.68 119.77 61.23 13.67 62.46 22.59 16.83 22.34 55.93
18 6.16 58.24 97.33 22.89 24.56 26.22 26.17 27.58 22.74 150.83 86.23 125.21 168.50 100.24 132.05 120.67 74.73
19 93.19 88.03 115.35 13.90 11.64 9.34 74.98 11.17 16.17 111.16 90.37 64.51 16.53 82.90 9.19 9.93 51.15
20 13.19 12.87 14.10 11.20 13.96 15.08 12.60 8.26 156.52 168.71 162.39 199.42 174.58 143.91 23.69 152.83 80.21
21 69.65 101.43 103.43 100.47 111.76 109.81 102.02 94.40 124.72 80.68 91.62 97.63 71.95 133.93 12.23 7.62 88.33

Standard deviations (SD) of the time of right side GM activity onset 

120 

( )1%gaitcy 10  for each 10-second data collection 
window.  The average SD across all data collections for each subject is presented in the last column.

c −le∗
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APPENDIX 9 
 

Gluteus medius muscle median frequency data 

 
 The following tables summarize GM sEMG median frequency (Hz) data and the 

resulting slopes for left and right sides across the 30-minute run. 
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        LEFT          
Subject 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 SLOPE

1 77.00 79.20 77.80 76.10 77.10 80.30 77.70 79.70 82.70 84.20 74.70 79.50 81.80 81.50 80.30 84.60 0.17
2 50.90 68.70 61.50 66.00 75.70 74.10 72.00 56.00 75.20 77.00 71.90 76.90 76.10 78.90 79.50 75.60 0.61
3 114.80 109.70 109.60 113.00 107.80 109.80 109.60 113.90 110.60 115.10 110.00 118.80 114.20 114.90 116.80 113.90 0.18
4 77.70 74.00 71.20 78.00 77.30 73.00 76.60 80.30 81.40 77.40 80.50 75.10 81.50 78.80 77.50 79.30 0.15
5 46.10 47.30 50.10 52.40 48.50 52.46 48.80 53.90 56.80 55.60 57.50 56.90 59.80 58.90 57.60 51.10 0.35
6 60.10 61.20 66.60 66.40 61.60 67.90 67.40 66.20 62.70 55.10 60.80 57.20 56.50 49.90 55.60 55.40 -0.38
7 79.60 85.40 86.90 83.70 87.10 88.10 80.60 77.10 81.70 86.00 86.20 92.50 91.50 89.40 88.70 92.30 0.28
8 92.30 98.50 93.80 93.50 97.90 94.30 95.40 92.30 93.60 95.30 93.10 94.00 99.10 96.00 97.00 97.20 0.07
9 89.30 97.90 103.40 99.40 100.70 97.50 100.80 108.80 100.10 95.50 105.70 99.10 106.50 103.00 103.60 107.70 0.31
10 98.20 101.80 105.90 101.90 98.90 90.60 98.80 97.30 97.30 101.30 96.50 98.50 89.60 95.30 91.90 83.90 -0.39
11 95.70 109.20 114.00 106.50 117.40 111.80 117.20 111.30 118.10 99.30 116.30 121.20 113.50 116.20 113.80 110.30 0.27
12 93.85 83.70 88.90 89.60 90.10 82.70 89.90 86.50 89.40 89.20 85.10 82.30 83.20 83.50 82.30 83.70 -0.24
13 69.70 75.70 75.10 72.40 69.00 81.10 79.82 72.40 77.50 81.70 74.50 85.70 80.60 79.50 76.60 74.50 0.22
14 45.70 38.00 44.00 45.40 43.60 43.50 40.00 38.90 41.50 42.50 41.70 44.40 47.20 43.90 46.60 46.50 0.11
15 82.70 83.00 92.60 87.20 91.30 84.40 91.40 93.00 92.50 93.70 98.10 94.60 91.20 98.10 97.80 96.80 0.44
16 92.10 93.10 97.90 95.80 93.20 96.60 94.90 89.80 97.50 93.60 96.30 94.70 90.10 93.20 100.30 100.10 0.09
17 94.30 78.70 70.50 61.40 60.00 67.70 61.60 68.90 63.40 70.90 73.70 74.00 61.90 67.90 63.80 50.90 -0.53
18 100.40 100.80 105.70 104.40 99.10 100.90 110.70 102.10 101.20 105.80 106.30 105.90 99.80 105.50 107.00 106.00 0.13
19 85.80 89.00 97.80 100.61 95.80 85.60 95.50 87.70 91.70 98.20 93.50 92.10 95.80 88.90 98.30 90.50 0.06
20 100.70 113.50 109.90 103.70 111.60 111.80 116.30 86.70 45.70 53.00 53.40 54.70 52.90 87.40 77.50 52.70 -2.07
21 87.70 91.20 78.70 87.50 90.00 83.60 81.10 80.20 84.20 77.00 84.70 89.20 83.40 86.00 80.00 83.40 -0.13

Left side median frequency (Hz) for each 10-second data collection period.  The slope of median frequency across the 30-
minute run is presented in the last column. 
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        RIGHT          
Subject 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 SLOPE

1 87.50 71.80 77.90 68.90 77.30 78.20 76.20 72.60 73.30 63.00 50.50 41.60 44.10 41.30 38.90 37.50 -1.64
2 86.60 86.50 87.40 80.50 86.60 84.80 85.10 86.50 88.10 82.60 90.50 84.80 85.50 79.00 91.50 86.00 0.01
3 101.30 98.20 107.00 101.90 106.70 110.10 105.50 108.60 113.40 112.50 107.10 109.40 111.20 114.10 107.00 111.30 0.34
4 68.60 81.40 76.10 72.50 77.30 74.10 75.50 72.10 73.50 76.70 80.70 79.90 73.40 75.10 78.60 79.20 0.13
5 40.70 48.70 48.50 50.50 48.40 44.43 46.50 49.20 47.70 49.60 50.20 50.50 55.40 52.20 49.40 51.80 0.23
6 59.30 61.20 64.40 68.00 65.60 56.80 69.80 64.50 64.60 63.30 63.40 63.70 62.50 71.10 51.50 63.90 -0.02
7 77.00 77.30 76.70 75.80 84.50 82.40 77.50 80.60 77.10 82.20 73.20 82.30 78.50 85.00 77.10 61.30 -0.13
8 93.20 86.20 86.20 90.40 92.80 98.90 91.70 94.30 99.60 98.10 90.60 103.00 97.00 96.10 99.80 97.60 0.34
9 116.40 105.60 105.10 112.60 111.20 109.10 103.70 109.80 103.30 116.30 107.80 111.30 113.70 102.30 104.60 112.60 -0.05
10 105.50 97.90 91.20 70.30 70.60 73.20 73.20 73.40 75.20 76.20 84.50 82.60 83.10 78.40 84.60 77.60 -0.34
11 73.70 72.40 77.70 73.70 82.00 83.70 89.60 84.30 95.00 96.70 97.10 98.40 100.50 92.30 97.20 109.60 1.09
12 49.36 56.80 59.90 70.10 69.70 77.70 78.60 76.30 77.00 76.60 75.10 81.40 82.90 80.90 73.90 84.70 0.85
13 30.50 44.60 60.10 54.80 65.50 66.00 81.70 83.10 77.20 79.30 72.00 74.10 84.40 73.30 82.60 85.00 1.32
14 29.40 32.60 33.60 32.70 33.30 32.80 33.20 31.20 30.50 35.90 36.30 44.70 43.00 36.20 36.80 41.40 0.34
15 72.50 79.00 76.30 74.70 75.30 76.30 81.60 82.90 79.30 82.20 82.30 79.00 78.80 84.70 85.20 77.30 0.25
16 96.50 94.80 96.60 95.30 99.70 94.90 93.80 95.40 103.40 93.00 102.70 98.50 99.50 103.00 102.70 98.10 0.20
17 45.00 44.90 40.00 55.70 70.40 77.60 78.90 83.10 86.30 77.10 84.30 82.90 82.90 82.40 88.20 85.90 1.48
18 77.40 85.60 81.80 80.10 85.40 85.40 78.90 91.00 82.80 87.00 93.10 95.50 96.30 95.50 93.70 102.10 0.66
19 85.90 84.90 83.90 82.73 82.80 82.20 91.40 87.40 84.10 94.80 86.80 85.70 85.50 84.00 92.90 89.60 0.17
20 115.20 111.90 112.80 115.70 116.40 115.80 117.60 109.50 116.00 103.70 101.60 109.90 95.00 111.70 73.00 105.00 -0.74
21 69.10 74.90 81.80 80.20 83.10 79.10 78.40 84.00 80.10 79.80 82.40 78.20 80.30 81.00 78.30 81.70 0.15

Right side median frequency (Hz) for each 10-second data collection period.  The slope of median frequency across the 30-
minute run is presented in the last column.
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APPENDIX 10 
 

Gluteus medius muscle peak amplitude data 

 
 Left and right side GM peak amplitude are summarized in the following tables.  

Pearson’s Correlations between average maximum pelvic drop and GM peak amplitude 

were R = 0.036 (p = .0513) and R = -0.027 (p = 0.621), for the left and right sides 

respectively, indicating poor correlations between pelvic drop and GM peak amplitude.
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        LEFT         
Subject 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 AVE

1 0.31 0.34 0.29 0.33 0.32 0.34 0.33 0.31 0.32 0.30 0.34 0.32 0.33 0.39 0.38 0.34 0.33
2 0.41 0.31 0.30 0.24 0.20 0.18 0.17 0.19 0.17 0.20 0.16 0.16 0.14 0.15 0.16 0.16 0.21
3 0.22 0.19 0.18 0.19 0.19 0.18 0.21 0.19 0.18 0.19 0.20 0.19 0.18 0.18 0.18 0.18 0.19
4 0.32 0.29 0.27 0.25 0.23 0.22 0.23 0.23 0.22 0.21 0.24 0.21 0.24 0.21 0.25 0.23 0.24
5 0.27 0.24 0.22 0.21 0.21 0.19 0.20 0.20 0.18 0.18 0.20 0.18 0.18 0.18 0.18 0.18 0.20
6 0.21 0.18 0.18 0.17 0.18 0.17 0.22 0.24 0.27 0.30 0.32 0.31 0.31 0.33 0.32 0.29 0.25
7 0.24 0.26 0.23 0.23 0.23 0.22 0.22 0.21 0.22 0.23 0.23 0.24 0.26 0.22 0.22 0.22 0.23
8 0.27 0.04 0.23 0.24 0.23 0.27 0.26 0.30 0.31 0.30 0.32 0.29 0.31 0.28 0.26 0.34 0.27
9 0.50 0.45 0.42 0.39 0.49 0.41 0.40 0.42 0.43 0.40 0.43 0.40 0.38 0.40 0.40 0.45 0.42
10 0.32 0.32 0.35 0.34 0.35 0.33 0.33 0.36 0.35 0.38 0.39 0.37 0.40 0.41 0.46 0.53 0.37
11 0.24 0.23 0.25 0.25 0.24 0.26 0.23 0.25 0.24 0.24 0.26 0.23 0.22 0.23 0.23 0.25 0.24
12 0.29 0.33 0.27 0.35 0.30 0.32 0.29 0.27 0.29 0.33 0.33 0.28 0.34 0.28 0.38 0.36 0.31
13 0.14 0.16 0.14 0.15 0.16 0.17 0.17 0.18 0.19 0.17 0.19 0.21 0.21 0.28 0.25 0.27 0.19
14 0.38 0.39 0.40 0.41 0.43 0.42 0.52 0.50 0.43 0.45 0.42 0.42 0.37 0.41 0.41 0.37 0.42
15 0.31 0.29 0.27 0.29 0.29 0.32 0.29 0.30 0.32 0.28 0.31 0.29 0.28 0.29 0.30 0.28 0.29
16 0.22 0.19 0.20 0.21 0.21 0.20 0.21 0.21 0.18 0.20 0.19 0.18 0.18 0.21 0.19 0.17 0.20
17 0.19 0.22 0.26 0.26 0.28 0.31 0.34 0.32 0.35 0.31 0.34 0.33 0.37 0.37 0.35 0.32 0.31
18 0.18 0.19 0.17 0.17 0.18 0.18 0.16 0.16 0.18 0.15 0.18 0.17 0.16 0.15 0.16 0.16 0.17
19 0.27 0.30 0.28 0.29 0.28 0.30 0.29 0.30 0.22 0.28 0.29 0.27 0.30 0.29 0.29 0.27 0.28
20 0.28 0.24 0.27 0.25 0.24 0.27 0.27 0.42 1.52 1.25 1.87 2.08 1.77 0.49 0.60 1.55 0.84
21 0.28 0.27 0.27 0.25 0.24 0.25 0.25 0.28 0.28 0.26 0.29 0.27 0.28 0.25 0.27 0.25 0.26

Left side average peak amplitude (v) for each 10-second data collection period.  Average peak amplitude across all trials is 
shown in the last colum. 
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        RIGHT         
Subject 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 AVE

1 0.22 0.23 0.22 0.23 0.22 0.21 0.21 0.22 0.22 0.35 0.60 0.71 0.97 1.09 1.36 1.42 0.53
2 0.16 0.17 0.16 0.18 0.16 0.17 0.17 0.16 0.17 0.18 0.17 0.16 0.16 0.17 0.15 0.17 0.17
3 0.26 0.18 0.18 0.16 0.19 0.19 0.17 0.19 0.19 0.19 0.19 0.19 0.21 0.18 0.20 0.21 0.19
4 0.35 0.26 0.25 0.24 0.28 0.26 0.26 0.26 0.27 0.27 0.28 0.23 0.24 0.25 0.26 0.25 0.26
5 0.34 0.25 0.21 0.24 0.22 0.24 0.27 0.25 0.24 0.27 0.25 0.23 0.25 0.27 0.29 0.27 0.26
6 0.28 0.29 0.29 0.29 0.29 0.29 0.29 0.30 0.33 0.37 0.34 0.35 0.31 0.34 0.75 0.30 0.34
7 0.24 0.23 0.26 0.26 0.22 0.24 0.25 0.24 0.24 0.25 0.27 0.25 0.26 0.22 0.32 0.62 0.27
8 0.29 0.05 0.28 0.30 0.33 0.36 0.36 0.36 0.39 0.36 0.40 0.37 0.39 0.35 0.38 0.36 0.33
9 0.61 0.55 0.60 0.53 0.54 0.61 0.60 0.60 0.58 0.51 0.54 0.54 0.54 0.54 0.58 0.48 0.56
10 0.22 0.23 0.29 0.35 0.38 0.36 0.36 0.34 0.38 0.41 0.39 0.33 0.31 0.37 0.31 0.33 0.33
11 0.32 0.31 0.26 0.26 0.27 0.22 0.22 0.25 0.21 0.21 0.20 0.21 0.20 0.22 0.20 0.21 0.24
12 0.45 0.52 0.50 0.47 0.35 0.32 0.32 0.29 0.31 0.31 0.32 0.26 0.30 0.29 0.28 0.28 0.35
13 0.71 0.31 0.33 0.38 0.32 0.29 0.24 0.20 0.26 0.24 0.25 0.23 0.25 0.24 0.24 0.25 0.30
14 0.87 0.92 0.52 0.67 0.67 0.68 0.49 0.47 0.48 0.43 0.45 0.40 0.45 0.51 0.53 0.48 0.56
15 0.35 0.46 0.39 0.43 0.41 0.40 0.48 0.45 0.46 0.39 0.41 0.41 0.44 0.42 0.49 0.42 0.42
16 0.21 0.20 0.18 0.19 0.19 0.19 0.19 0.18 0.17 0.19 0.18 0.19 0.17 0.19 0.18 0.16 0.19
17 0.51 0.50 0.47 0.40 0.30 0.27 0.28 0.24 0.28 0.25 0.30 0.27 0.31 0.27 0.24 0.28 0.32
18 0.23 0.22 0.20 0.21 0.20 0.20 0.19 0.20 0.19 0.20 0.20 0.19 0.19 0.19 0.19 0.19 0.20
19 0.35 0.40 0.34 0.37 0.35 0.40 0.37 0.45 0.43 0.38 0.36 0.41 0.36 0.34 0.39 0.37 0.38
20 0.35 0.37 0.33 0.32 0.32 0.33 0.33 0.31 0.28 0.31 0.33 0.34 0.44 0.32 0.90 0.36 0.37
21 0.39 0.28 0.34 0.37 0.31 0.37 0.39 0.34 0.31 0.31 0.30 0.32 0.35 0.39 0.38 0.37 0.34

Right side average peak amplitude (v) for each 10-second data collection period.  Average peak amplitude across all trials is 
shown in the last colum. 
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APPENDIX 11 
 

Observed power following data collection for Specific Aims #1, 2, and 3 
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 Torque 
(Specific Aim #1) 

Peak Timing 
(Specific Aim #2) 

Onset Timing 
(Specific Aim #2) 

Fatigue 
(Specific Aim #3) 

Left 17% 3% 11% 2% 
Right 3% 3% 4% 2% 
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APPENDIX 12 
 

Pearson’s Correlations (R) between frontal plane pelvic drop and gluteus medius muscle 

torque as a function of time 
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 LEFT RIGHT 
 R p-value R p-value 
Minute 0 -0.184 0.425 0.138 0.550 
Minute 2 -0.079 0.734 0.141 0.542 
Minute 4 -0.147 0.526 -0.059 0.801 
Minute 6 -0.257 0.261 0.081 0.729 
Minute 8 -0.105 0.652 0.053 0.818 
Minute 10 -0.176 0.445 0.045 0.845 
Minute 12 -0.140 0.546 0.047 0.839 
Minute 14 -0.173 0.453 0.004 0.986 
Minute 16 -0.114 0.624 -0.034 0.885 
Minute 18 -0.222 0.334 0.022 0.925 
Minute 20 -0.342 0.129 0.003 0.990 
Minute 22 -0.216 0.347 0.026 0.912 
Minute 24 -0.251 0.273 0.066 0.777 
Minute 26 -0.201 0.382 -0.058 0.803 
Minute 28 -0.254 0.266 -0.115 0.618 
Minute 30 -0.226 0.324 -0.097 0.675 
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APPENDIX 13 
 

Pearson’s Correlations (R) between frontal plane pelvic drop and gluteus medius muscle 

peak timing as a function of time 



www.manaraa.com

132 
 

 LEFT RIGHT 
 R p-value R p-value 
Minute 0 0.126 0.586 0.089 0.700 
Minute 2 -0.163 0.480 -0.001 0.998 
Minute 4 -0.082 0.725 0.058 0.802 
Minute 6 -0.083 0.719 0.474 0.030 
Minute 8 -0.074 0.749 0.370 0.099 
Minute 10 -0.167 0.470 -0.219 0.339 
Minute 12 -0.050 0.828 -0.395 0.077 
Minute 14 -0.068 0.771 -0.352 0.118 
Minute 16 0.058 0.804 -0.200 0.385 
Minute 18 -0.100 0.665 0.018 0.938 
Minute 20 0.093 0.688 0.527 0.014 
Minute 22 0.011 0.963 -0.244 0.286 
Minute 24 -0.124 0.593 -0.098 0.674 
Minute 26 -0.024 0.918 -0.117 0.613 
Minute 28 -0.037 0.872 -0.306 0.177 
Minute 30 -0.124 0.591 0.054 0.816 
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APPENDIX 14 
 
Pearson’s Correlations (R) between frontal plane pelvic drop and gluteus medius muscle 

onset as a function of time 
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 LEFT RIGHT 
 R p-value R p-value 
Minute 0 -0.035 0.882 -0.155 0.503 
Minute 2 -0.158 0.494 -0.073 0.752 
Minute 4 -0.179 0.436 0.075 0.746 
Minute 6 -0.131 0.573 -.204 0.376 
Minute 8 -0.080 0.729 0.160 0.488 
Minute 10 -0.172 0.456 0.202 0.379 
Minute 12 -0.367 0.102 0.115 0.620 
Minute 14 -0.362 0.107 0.172 0.455 
Minute 16 -0.298 0.189 -0.171 0.459 
Minute 18 -0.227 0.323 -0.063 0.787 
Minute 20 -0.116 0.616 -0.173 0.452 
Minute 22 -0.203 0.377 -0.075 0.745 
Minute 24 -0.260 0.255 0.032 0.890 
Minute 26 -0.356 0.113 -0.233 0.310 
Minute 28 -0.260 0.254 -0.280 0.219 
Minute 30 -0.059 0.799 -0.310 0.172 
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APPENDIX 15 
 

Virginia Commonwealth University Institutional Review Board approval letter 
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